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This paper describes a finite volume discretization method to compute steady, two-
dimensional incompressible viscous recirculating flows using hybrid unstructured
meshes, composed of triangles and quadrilaterals. However, the proposed formulation
is not restricted to these topologies.

The new method includes a second-order least squares scheme for convection dis-
cretization, and a fractional step projection method based on a staggered grid arrange-
ment for pressure velocity coupling. Numerical results are reported to demonstrate
the robustness, second-order accuracy, and flexibility of the proposed method.

To the authors’ knowledge, this paper represents the first general unstructured grid
finite volume method to achieve full second-order accuracy for the steady incom-
pressible 2D version of Navier—Stokes equations, 1999 Academic Press

Key Wordsviscous flow; incompressible; projection methods; unstructured hybrid
grids.

1. INTRODUCTION

The numerical integration of the Navier—Stokes equations, for incompressible fluid fl
in primitive variable formulation, faces the problem of the pressure—velocity couplin
This problem has been overcome in the framework of finite differences or finite volur
method by several classical methods and mesh collocation arrangements for the depe
variables; see, for example, [1-5]. Extensions of these methods are straightforward
structured curvilinear orthogonal or non-orthogonal grids; see, for example, [6]. Howe\
for unstructured grids, the numerical methods to achieve pressure—velocity coupling
less well documented in the open literature and most of the reported works employ vers
of the SIMPLE algorithm for collocated meshes.
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The Harlow—Welch algorithm [1] constrains the velocity field into zero divergence t
coupling the continuity and momentum equations via a pressure Poisson equation.
requirement for artificial boundary conditions for the pressure equation may not be
agreement with the requirement of velocity boundary conditions for the Navier—Stol
equations [7]. Chorin [3] proposed an explicit and dissipative artificial compressibili
method by combining the continuity equation and an artificial state equation to obtain
pressure field. Patankar and Spalding [4] proposed the family of semi-implicit presst
linked equations that impose the incompressibility constraint via a Poisson equation
pressure correction.

The projection methods [8, 9] are based in the Hodge decomposition in Hilbert spa
where the divergence vanishes through the orthogonal projection in the vector space of
divergence. This projection is made using discrete operators for divergence and grac
(its skew adjoint).

First- and second-order-accurate versions of the projection method have been prop
in the framework of finite differences using structured grids. Van Kan [10] has propose
version of the projection method for structured orthogonal staggered grids using the s
adjoint of the discrete divergence operator as discrete gradient operatoet Bél[11]
have proposed a projection method for structured Cartesian staggered meshes in whic
projection was attained by a Galerkin procedure. Moreover, the gradient discretization
used to obtain the skew adjoint of the divergence operator. A generalization of this met
for structured non-orthogonal mesh arrangements was proposed bgt Bél[12]. Also,
the condition of zero divergence has been relaxed by Almgteah [13].

For unstructured grids, Guermond and Quartapelle [14] have proposed, in the framev
of the finite element method, a projection method for triangular meshes. Also in the con
of finite elements, Gresho [15, 16] has derived several types of projection methods wt
included a complete discussion of the related theoretical aspects of the methods.

The present paper presents a conservative finite volume projection method for the
lution of the incompressible Navier—Stokes equations. The method is based on a hy
unstructured mesh composed of, but not restricted to, triangles and quadrilaterals that
be mixed in the computational domain. It uses a staggered grid arrangement, which
generalization for hybrid unstructured grids of the ICED-ALE arrangement [2]. The pre
sure field is computed in a way that averts generating a checkerboard distribution assoc
with the ICED-ALE staggering arrangement for quadrilaterals. The overall method is,
the authors knowledge, the first finite-volume method based on a hybrid unstructured
to attain full second-order accuracy in the computations of incompressible fluid flows.

The accuracy and the stability of the upwind least squares scheme (ULSS) are anal
within the present framework. Finally, the accuracy and the robustness of the ensuing me
are assessed. This is done by comparing our solutions against either known analytic
standard numerical test case solutions available in the literature.

2. DISCRETIZATION PROCEDURE

The transport equation for a quantigyin the intrinsic form can be written as

% +div(pup — Iy gradep) = S, (2.1)

whereu is the velocity vector fieldp is the density field['y is the diffusivity of ¢, and
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S is the source/sink balance ¢f In the present work, by using the finite-volume method
numerical integration of Eq. (2.1) is carried out on an unstructured hybrid grid consisting
the two-dimensional case, of triangles and quadrilaterals. Other grid topologies are alloy
by the formulation but these shapes suffice for most of the applications.

Leto denote a partition of the domain of interetc R?, i.e.,

Q=Joi, ainoj=@, i#j, i,i€d o=laliu

i€j

whereJ is a finite index sety; € o is a control volume. In the present work, each contro
volumeo; € o can be either a triangle or a quadrilateral. In the finite-volume approach \
start with the integration of Eq. (2.1) over each control volume, so that we seek a solut
of Eq. (2.1) in the generalized sense [17].

Givent €0, and a time stept, it proceeds as

P n+1 _ P n
P mi)+ [(oup -y gradein = [ s, 2.2)

it T
wheremy (7) is the Lebesgue measure gfthe overbar stands for the temporal average
and we have used th@auss Divergence Theoraim move from an integral over to an
integral over its boundar§z. Equation (2.2) can be cast in the flux balance form

n+1 _ n
wmv(r) +Yc+Y bi=s (2.3)

iedr iedr

wheredz is the set of faces composing the boundaryr o is the average amount of
creation/destruction ap overt; andC;, D; stands for the convective and diffusive flux of
¢ over face € dt, respectively. In symbols, we have

C = /pvn¢, iedr

9 .
D, E/_r(ba—ﬁ, iedr (2.4)

sz/sz,,

whereuvy, is the velocity component normal to the fdcedr andg—‘r’j is the derivative in the
(exterior) normal direction to the face.

We continue with the description of the discretization of the convective and diffusi
fluxes of¢.

Convection Discretization Procedure

The ULSS is based on the pointwise reconstruction of the vargablea piecewise poly-
nomial which, similarly to the essentially non-oscillatory (ENO) scheme [18], is require
to be consistent with averaging and of high order of accuracy. These requirements am
to the reconstruction polynomi& € I, (R?) satisfying:
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(a) consistencyin the sense that

l _
R = , 2.5
—= / s (2.5)

Where¢7t is the space average valuegobverr;
(b) high order of accuracyin the sense that whenever there is a neighborkbad
whereg is regular, we have

R(X) = ¢(X) + O(h"), xeU, (2.6)

whereh is a grid parameter and> 1 is the order of the method, which in the present wor}
isr=2.

The symbolll, (R?) stands for the set of piecewise polynomialsficompatible with
a partitiono, i.e., given an elemenR e I, (R?) and a setr e o, there exists a unique
polynomial p € TI(R?) such thatp(x) = R(x), x € T, whereII(R?) stands for the set of
polynomials inR2. Under the above conditions we proceed with the derivatioR.of

We start with the space-averaged valugg stiored at the centroids of the control volumes.
Then, given a sat € o we approximate the functiamoverz by an affine or bilinear function
depending on whether is a triangle or a quadrilateral, respectively. The polynomial i
computed by the least squares approximation of the average values of the function &
appropriate set of neighboring points. Next, we give the details of the procedure for a triar
and a quadrilateral control volume.

7 Is a Triangle
For any pairn(xz, X2) € T we write

R(X1, X2; ¢) = 55 + arXy + agxxo, (2.7)

whereay, a, are coefficients to be determined, aixg, x») are local Cartesian coordinates
with origin in the centroid ot (see Fig. 2.1). We compute the coefficieatsa, from the

)
-;—

n
11

FIG. 2.1. Stencil for convection discretization.
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following minimization problem: findy, a, such that
x@na) =Y (ROLXu¢) —d)° =D (¢, +ax +axh—)°  (2.8)
ici, i€i,

iS minimum.

In Eqg. (2.8),i. ={I,1lI, 111} stands for the set of adjacent control volumes t(see
Fig. 2.1), and(x}, xb) is the coordinate pair of poiritei,. Solution of this problem is
obtained as in the least squares method by solving the set of linear equations resulting

VX(a]_, ) = 0. (29)

The solution of the previous equation can be easily shown to be

Zieir(q;i - ¢71)Xi12ieir(xi2) Z:|e|r ¢ )XZZIEI XlXZ
A

EIEI ¢ )XZZIEI (Xl) Z|e|, ¢ )X12|e| X1X2
A

a; =
(2.10)

a =

whereA is the determinant

P2 iy
ao | Zatd) ZIEIIX;XZZ . (212)
D iei, X1%2 Ziei,(XIZ)

Notice that the necessary and sufficient condition for the existence of a unique f
ay, a2 is the non-vanishing of the determinart Next, we prove that it never vanishes in a
partition. Writing A in expanded form as

2

2
A= (el )+ O — ) () (212

we conclude that = 0 is equivalent to

X{ /%) = X /X}
Xy /xy = x" /xy (2.13)

III/XIII Xl/x2'

Hence,A vanishes if and only if the four centroids, the centroid @hd those of its three
adjacent neighbors, lie over one and the same straight line. Since this cannot occur in
partition we conclude the existence and uniqueness of the coeffiaigrts

We proceed by showing tha satisfies the proposed conditions of consistency and ¢
high order of accuracy. Consistency follows at once from the fact that the origin of the lo
coordinate system coincides with the centroid of

To determine the order of accuracy of the proposed method we expand each vahte of
neighboring points in Taylor series about the centroid,@ssuming sufficient smoothness
in a neighborhood of the centroid. For exampre,is given by

¢, = ¢, + D1¢,X] + Dagp X3 + O(h?), (2.14)
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whereh is the grid parameter taken to be the greatest cell width of all control volumes, i.
h = max(4my (t)/ms(91)).
TEOD

ms(dt) is the surface measure of the boundaryrleqb_f is the derivative ofp_, relative

to its first argument and evaluated at the centroid,and so on. Then, introducing such
expressions in Eq. (2.10) and the latter in Eq. (2.7), and after a lengthy but straightforw
manipulation (taking into account that=~ 0), we arrive at

R(X1, X2; ¢) = ¢, + D1, X1 + D2gp, X + (@D 1¢, + bD12¢, + cDs2¢,)h? + o(h?)
= ¢ (x1, X2) + O(h?) (2.15)
for all (x1, X2) € T, wherea, b, c e R, and, for example, the coefficient of the mixed deriva-
tive, b, is given by
b = (—C,C5DyD? — C,C3DyD? + C2C,DyD; D, + C;C5Dy D1 D,
+ CxC1C,D?D, — CC5D?D, — C2C,Dy D3 — C,C3D, D3 — CxCZD; D2
4 CxC1C,D;1 D5 + C?C3DyD; D3 + C;C3DyD; D3 + CxC1C3D?D3
— C4C2D?D3 + C2C3Dy D, D3 + C,C5Dy D, D3 + CxCoC3D3D3
— CxC3D3D3 — C2C3Dy D2 — C2C3D,DZ — C,C?D; D2 + C,C1C3D; D2
— CxC5D,D3 + C,C,C3D,D3) /(—C3D% — CZDZ + 2C1C,D;1 D,
— C#D§ — C4D3 + 2C,C3D; D3 + 2C,C3D,D3 — CZD3 — C5D%),

where

Ci=x/h,Co=x{/h,Cs=x"/h,D1=x}/h,
D2=X|2|/h, D3=X:|;,”/h,CX=X1/h, Dy=X2/h,

and local smoothness ¢fand
¢ =d(x1. %) + O(ND),  (x1.%) €7 (2.16)

were used.

In order to have an idea of the form and magnitude of the truncation errors in Eq. (2.1
we next consider the case of a regular grid composed of equilateral triangles. In this c
the first truncated terms are given by

2

h — k — k —
R(X1, X1 §) = ¢ (1, X2) + (—lel,z@ - §D1.1¢t + 52 Dz,2¢>f) +0(h®), (2.17)

wherex; = hky, x, = hky, so thatk; e [—1/2, 1/2] andk; € [—1, 1/2] within t. To further
investigate the nature of the error under this condition we perform a rotation of the coordir

system
X} cosfd  sind [ x
X5 —Sing cosh || X2
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which leads to

h? — — -
R(X1, X33 ) = ¢ (X, Xp) + - (ADry¢. + BDr2¢. + CDz2¢,) + O(h%), (2.19)

where

k k k ki .
A:—EZCOSZ)—ElsinEP, B = k;cos 2, C:EZCOS$+51SIHZ9. (2.20)

Hence, a rotation of 45eliminates the mixed derivative, and we find

’ oo K h2 N N
R(X1, X33 ) = ¢ (X, X5) + 17(—D1/,1/¢T + D22¢,) + O(h®), (2.21)

which shows that the leading term in the truncation error is compatible with a spatia
propagating wave with constant unit speed.

Finally, the convective flux is evaluated at the control volume faces by solving a line
Riemann problem with right and left values given by the averaged valuesabfight and
left sides of the face, respectively. The convective velocity is given by the local value of
normal component of the velocity at the face.

Remark 2.1. Inthe case of the Navier—Stokes equations, the linear problem is substitu
by the Riemann problem for the Burgers’ equations in a local coordinate system with ¢
of the coordinates aligned with the normal direction to the cell face. Namely, we choc
the limit values of the reconstruction polynomials for the velocity componentsamdx,
directions, which are upwinded with respect to the component of the velocity vector fit
(from the previous time step) normal to the cell face.

The left- and right-averaged value at the cell (control volume) face in the case of a trian
is just the value oR computed at the middle point of the cell face. Spat a face € 9,
is approximated by

Ci = (pvnms(i))idi, (2.22)

whereg; is given by

¢ =

{R(xl(i —0), %0 —0):¢), ifvy>0 (2.23)

R(X1(i 4+ 0), Xo(i + 0); ), if vh <O

and R(x1(i £ 0), x2(i 0); ¢) stands for the left limiti — 0), or the right limit(i + 0) of
R at the middle point of the cell face under consideration.

7 Is a Quadrilateral

In the case of a quadrilateral control volume, there is one more neighboring point av
able. Therefore, we use a bilinear reconstruction. Analogously to the triangle, we comy
a1, ap, az € R that minimizes,

(@1 82,85 = > (R(XL, xb: @) — 1), (2.24)

with

R(X1, X2: ) = ¢ + a1X1 + @Xa + B3X1Xa. (2.25)
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It is easy to see that the solution of the latter problem is given by

Zieit(xil)z Yie X% e, (Xil)zxiz ay Yici (B — X
> iai, XiX5 Ziei,(XiZ)z Ziei,xil(xiz)z o | = | Yia @i — 9%

Sia 005 Tiad06)? T 00)*0)°] T LD @ - e
(2.26)

Q

The existence and the uniqueness of a solution of this linear system are assured i
matrix on the L.H.S. of Eq. (2.26) is non-degenerate. gi¢fi, j =1, 2, 3, denote the
components of this matrix. In order to characterize the set where the latter is degene
we first observe thay;; can be written as

gij = vi - vj, (2.27)
where

= (%), v2=00)g,. and  vs= (X)) - (2.28)
Hence,g;; is analogous to a metric matrix in a three-dimensional subspaRé,and it
will be non-degenerate if and only b, vo, v3} form a basis of this subspace. That is, it
will be degenerate if and only if; is zero for some € {1, 2, 3}, or if there exist constants

a, b, ce R, not all vanishing at the same time, such that
avy + bvo + cvz = 0. (2.29)

Therefore, for §;] to be degenerate, eitheg =0 (v1, v2 #0) or if c#0, all neighboring
pointsi, must lie over one and the same square hyperbola,

a b/c
Xp b o= 1 2.30
2+ cC b/c+x ( )
or, if c=0, over the same line,
ax; +bx =0. (2.31)

Since these curves have zero measuR¥irthe probability of randomly generating such
points is zero. However, the grid generation is not a random process and indeed there
common situation where the neighboring points leadste: 0: for example, this happens
when the grid is Cartesian. This result could have been anticipated by noticing that in su
case the curvature of the bilinear approximation is not “felt” by the minimization probler
and so an infinite number of coefficients would have resulted. In such cases, we fix
indeterminacy by taking the affine function as for a triangle control volume.

Consistency will not necessarily follow in an arbitrary coordinate system since, in gene
the area inertia produdt;, = ff X1X2, of the control volume does not vanish. This difficulty
is overcome by rotating the local coordinate system to coincide with the principal axis
inertia of the control volume, where by definitiofy = 0. The rotation anglé is given by

2112

tg26 = ,
l11— 122

(2.32)

wherel;1, andl,; are the area moments of inertia in theandx, directions, respectively.



48 KOBAYASHI, PEREIRA, AND PEREIRA

As for the triangle control volume, the convective flux is evaluated at the control volur
faces by solving a linear Riemann problem with right and left values given by the averac
values ofR at right and left sides of the face, respectively. Computations of the seco
moments and the limit mean values®ft a cell face are carried out by Gauss quadrature

Finally, the order of the method is evaluated as in the triangle case by assuming suffic
smoothness op in a neighboring of the centroid, expanding in Taylor series the neig|
boring points tor, and substituting in the reconstruction polynomial. Again, a lengthy bt
straightforward computation yields as leading truncation errors

R(X1. X2i ¢) = ¢, + D1gp, X1 + Dagp, Xz + (AD116p, + EDzop,)h? + 0(h?)
= ¢ (X1, X2) + O(h?), (2.33)
whered, €€ R. Notice that in contrast to the triangle control volume, the mixed derivativ

does not appear. For example, in the case of a Cartesian grid with expanding/contra
ratios ra and raj in the x; andx; directions, respectively, we find

.~ (raf—1)

2= O3t ra8) (234
and

.~ (rag-1)

*= S rag) (2:35)

Notice that for raf =rat = 1 the method is third-order accurate.

We have shown the method is consistent and second-order accurate. Here, it shou
stressed that independently of its irregularity and composition, the method is second-o
accurate in any grid topology. Indeed, a shape was never assumed for the neighbors
was any regularity assumed for the grid. This is in contrast to other methods for conv
tion discretization commonly used in applications. These methods, the central differenc
scheme, the minmod scheme, the MUSCL scheme [19], the linear upwind scheme, an
non-oscillatory UNO2 scheme [20] are only second-order accurate on uniform grids. T
fact can be relevant in applications where almost invariably all grids are non-uniform a
composed of a sensible (limited) number of points.

Diffusion Discretization Procedure

Diffusive fluxes are approximated as

' a9 Lo} . .
D= | —Ty— ~ —Ty —mg(i), I €0;. 2.36
i / ® an B an; s(1) €0 ( )

This approximation is accomplished by taking the central differencing of the interpolat
adjacent node values, i.e.,

a¢ ¢n+ ¢n7

2.37
an sn ( )

whereg"t and¢"~ are linearly interpolated at the points indicated in Fig. 2.2,&mid the
distance in the normal direction between these points. The proposed approximation re
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FIG. 2.2. Diffusion discretization.

to the second-order-accurate central differencing scheme in the case of a Cartesian gr
general, it is exact for polynomials of first degree, i.e., affine functions.

Remark 2.2. In the case of the momentum (vector) equations, the diffusive flux, i.e., tl
deviatoric stress tensor, requires an extra interpolation in the direction tangent to the
face. Indeed, given a fade= 9t and its outward normal unit vector the deviatoric stress
tensoro,, identified with a linear map when appliedripgives the tension vector that acts
at facei. Taking into account the Stokes model &1, we obtain

avn avn avt
) = v 280 ¢ (D T ) 2.38
(N ”( ann+(8t+8n>) (2.38)

wheret is the tangent unit vector (see Fig. 2.2) = v - nis the outward velocity component
normal to face, andv; = v - t is the velocity component tangent to that face. So, in additio
to the normal derivative, which is evaluated as indicated above, the computation of the t
dvp/0t is required. This is carried out similarly to (2.37) as

dun " = vy (2.39)
at st '

wherev!", v\~ are linearly interpolated at the points indicated in Fig. 2.2&mslanalogous
tosn.

Von Neumann Stability Analysis

For the sake of conciseness, we perform a von Neumann stability analysis for the ¢
of the one-dimensional transport equation of a scalaie assume a constant velocity
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(to the right) and a constant diffusive coefficidhy. The transport equation is discretized
over a uniform mesh with grid parameteiand a constant time stept. We consider the
discretization procedure for the diffusive flux as discussed above (which under the conditi
of the present subsection reverts to the central differencing scheme) in the Euler imp
form and three temporal discretization procedures for the ULSS scheme, namely: (i)
Euler implicit approach, (ii) the Euler explicit approach, and (iii) the deferred-correctic
approach. The selected combinations cover the range of temporal discretization metl
usually employed in the applications. At this point it should be emphasized that in t
present paper we are only interested in computations for the steady state. So it is suffic
to consider methods that are only first order in time. In fact, at steady state, the numei
solution will be of the order of accuracy of the space discretization procedure, which in-
present case is second-order.

Case |: Convectior> implicit, diffusion— implicit. Underthe conditions ofthe present
subsection Eq. (2.3) simplifies to
(of O

¢in+1 — ¢In _ ZC( |ni_11 + 3¢in+1 ¢n+1 ¢n+1) + é (q,)in:-ll 2¢|n+1 +¢n+1) (2_40)
whereo. = At /1. is the CFL number, with the convective time scale=h/u, and Pg=
uh/ T, is the grid Rclet number. Then, by substitutiggin Eq. (2.40) by itskth Fourier
mode, i.e.¢p — ® expikx), where® is the amplification factor ankl the wave number,
and subsequently factoring the resulting equation, we obtain the following expression
the amplification factor,

4
4 + 80¢/P&,(1 — cosp) + oc(exp(—2iB) — 5exp—iB) + 3+ expif))’

(2.41)

where =kh. The method is von Neumann stablgdf| < 1. So, the implicit method is
unconditionally stable. In fact, it is sufficient to observe that the denominator of Eq. (2.4
can be written as

2
| D |gen = \/(4 + 8;—;(1 — cosB) + oc(1— cos,B)Z) + 02(6sinB —sin28)2, (2.42)

which is greater than 4.

Case Il: Convectior> explicit, diffusion— implicit. With the same notation as above,
the discretized equation now reads

o o
=g — ZC (¢ 1+ 30 — 501 + ¢ 5) + é( =290+ ¢n+l) (2.43)

and the corresponding amplification factor is given by

d =
Pa, exp(—2in)(—4 expdinn) + oc(1 — 5exp2inn) + 3expdinn) + exp6inn)))
d(oc(1— 2exp2imn) + expdinn)) — exp(2izn)Pa,)

s

(2.44)
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wheren = 2 anda is the wavelength, = 27” So,n is the reciprocal of the non-dimensional
wavelength. Contrary to the previous case, the present combination is not unconditior
stable. In fact, to be von Neumann stable it is necessary thdl, wherg ®| = 1, be a point

of maximum. That is, Reando, must satisfy

2
93| P| <o
an? |,_o
or
P& — (20, + P
4712<((oc -2 —41-o00)) — (P4 (P:‘é * e‘))> <0. (2.45)
So, itis necessary that
ocPe <2 (2.46)

This last condition is also sufficient. In fact, by taking the derivativgdgfwith respect
to n and then substituting. by 2/Pe, yields
3P|
M |2/pPa,.Parm)
_ 87P¢, cosn) (22— P&, + P, — 8 cog27n) — 3PE cos27n) +2 €027 ) Si (1))
B (4cos2nn) —4— P)°|@(Z. Pay. n)|

(2.47)

This result follows from noticing thgtd| is periodic with respect tg with unit period, that
it is even with respect t9~—/2, and that

3|
el <0, (2.48)
91 |2/Pe,Pern)

for all n €[0, 1/2]. In conclusion, the ULSS for the explicit-implicit case is stable if anc
only if o.Pg, < 2.

Case IlI: Convectior> deferred-correction, diffusior> implicit. In this case, the dis-
cretized equation reads

Pt =gl — %( M) — % (¢ 1+ 207 — 41 + ¢ 5)

[of
+ pe (413 =207+ 911), (2.49)

to which corresponds an amplification factor of

_ Payexp(—2imn)(4expdinn) +oc(—1+4exp2inn) —2expdinn) —exp6inn)))
" oc(—4+8exp2inn) — 4expdinn)) + 4Pe expdinn) + ocPea(expiTn) — 1)
(2.50)
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An analysis analogous to the previous one shows that the ULSS for the deferred-correct
implicit combination is stable if and only #.Pe, < 4.

In the literature it is frequently claimed that deferred correction can stabilize the conv
gence procedure (see, for example [21-23]). However, as this relation indicates unde
present conditions the stability gain is only marginal for high.Pe

Boundary Conditions
We consider two types of boundary conditions: (i) Dirichlet and (ii) von Neumann.
Dirichlet boundary condition. When the value of the variabdieis known at a boundary

d1g, We use it directly in the convective flux, i.e.,

Cg = pe(vn)BPBMs(dTR), (2.51)

where the subscrif8 denotes the corresponding value at the boundagy On the other
hand, for the diffusive flux we compute the (exterior) normal derivative as

¢ __( 1 N 1 ) +(5I’l)|| 1 +(5n). 1
ng @) (@n)y )y )y — BNy @y (8n)y — (8N

o,
(2.52)

where the notation is defined in Fig. 2.3. This method corresponds to an immediate ge
alization of the one-sided second-order method for approximating a derivative.

Von Neumann boundary conditionln contrast with the previous case, itis the derivative
% that is known at a boundawrg. So, for the diffusive flux we compute

99

Dg = —(T"
B ( "’)Ban“g

Ms(d7g). (2.53)
Finally, for a control volume adjacent to the boundams, we used¢/ong in the re-
construction. This is attained by modifying the unrestrained minimization problem in
a conditioned one. For instance, in the case of a triangular control volume we solve

FIG. 2.3. Diffusion discretization at boundaries.
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following: find a3, a, such that

x (a1, @) = Z (R(X], Xb; ¢) — ¢7,)2 = Z (¢, + arx, + apxh — q?.)2 (2.54)
is minimum and
R ¢

— = — . 2.55
8n|B an‘B ( )

This problem can easily be solved using the Lagrange multiplier method; that is, we so
for (a1, ap, v) € R3, the equations

Vyx(a1, ap) = vVy(ag, a)
1, d2 yag, a2 (2.56)
y (a1, @) = aing + azxny = 0,

wherev is the Lagrange multiplier. The quadrilateral control volume is treated analogous
In Section 4, we study the influence of the boundary conditions on the quality of t
results.

3. FRACTIONAL STEP PROJECTION METHOD—F raSp

Having established the discretized version of the convection—diffusion equation, we |
ceed with the derivation of the projection method for the computation of incompressil
fluid flow on unstructured hybrid meshes.

Given a grido, we define the dual grie* by joining the centroids of control volumes
concurrent to the vertices (see Fig. 3.1). Metlenote the linear space of vector fields with

B Vectors (£2)
O Scalars (2,)
— Grid (o)
----- Dual Grid (c%)

FIG. 3.1. Mesh arrangement.
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support at the centroid of the mesh control volumes, i.e.,
V={ueX):u=0,i¢Ql (3.1)
where
UeX(Q) & uQ— QxRY,

with u(i) =G, u), i € 2, u; € RY and where2, stands for the set of centroids of the mesh
control volumes, and dind = N. Similarly, let S be the linear space of scalar fields with
support at the vertices of the mesh control volumes, i.e.,

S={peF(Q):¢ =0,i &}, (3.2)
where
PeF(Q) & ¢:Q—> QxR,

with ¢ (1) =(, ¢y), 1 € 2, ¢ € R and where2, stands for the set of vertices of the mesh
control volumes, and dirB= M. Define the inner product ovéf as

G, )v:VxV >R
(U, ) > Uy = YU umy (D),

ieQe

(3.3)

wheremy is the Lebesgue measure and) is the control volume associated with centroid
i,i €. Let

(.)s:Sx S— R
(e ) > (@ )s= Y giamy (i)

ieQ,

(3.4)

be the inner product oves, wherer*(i) is the control volume associated with the vertices
i,i €,. With the above definitiongV, (-, -)v) and(S, (-, -)s) are Hilbert spaces. In fact,
the defined inner products are the pull back through a “weighted coordinate isomorphis
to RN andRM, respectively, of the standard dot product.

We consider the sectiors Q. — Q. x E(RY), and&: Q, — ©, x E(R) of the trivial
fiber bundleg Q. x E(RY), pri, ) and(2, x E(R), pri, ,), respectively, given by

ei)=(,(er....a)), &) =(.D (3.5)

foralli e Qc, j € Q,, Wwhere{ey, .. ., g4} is the canonical basis &. For instanceE (RY)
is the subspace of the Cartesian product

RYx...xRY
—_————

d times

composed of pointp = (p, . .., pqg) such that all components, ..., ps € RY constitute
abasis oRY, andpry: ¢ x E(RY) — Q. is the projection on the first factor. Similarly, we
define(Q2, x E(R), pri1, ,) (notice that we user;: Q, x E(R) — Q, for this fiber bundle
as well).
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Over these spaces, we then define the gradient op&ta®r> V as

d
Gop=> > (Go);iei) (3.6)
ieQe j=1
for all ¢ € S, where
Go)i(i)= ———— ms(f)ni(f) e R 3.7
¢ j mv(r(|)) f;r(i)(ﬁf S j ( )
foralli e Qcandj =1, ..., d,wherez(i) is the control volume associated with the centroic
i,d7(i) denotesits boundary, i.85() ={f1, ..., fgr}, #f (i) is the number of cell faces

associated with the control volumaé ), i € Q, ¢+ isthe arithmetic mean of the values of the
functiong at the vertices associated with the cell fdcendn; (f) is jth component of the
unit exterior normal vector at cell fack j =1, ..., d. We similarly define the divergence
operatorD:V — Sas

Du = Z Du()&() (3.8)
ieQ,
forallu eV, where
. 1

foralli € Q,, wheret*(i) stands for the dual control volume associated with the vertice
i, dt*(i) denotes its boundary, i.éz*(i)={f1,..., f4rq)}, #f (i) is the number of cell
faces associated with the control volum&i), i € Q,, us is the arithmetic mean of the
vector fieldu at the vertices associated with the cell fateandn; is the unit exterior
normal vector at cell facé.

With the above definitions for the projection method, we proceed with a fractional tin
evolution given by the solution of the following linear probldis: Find u"*° eV such
that

un+Lo _yn

TN E D(Mu" ® Cu™™0 — o, u"0%) = —Gp"  and  uljp}® = g,

(3.10)

whereg;: 9Q — dQ x RY at each time is a given vector field over the domain boundary
92, 0 is the set of points oA at the center of the edges of the control volumes whicl
are adjacent to the boundariess the velocity vector fieldp is the pressure fieldyt is the
time stepg, is the deviatoric stress tens@ denotes the tensor product, and the superscril
n denotes the value at tinéh time step. In this expressioD; Ve ® Ve — V, whereV, stands
for the linear space of discrete vector fields with support at the control volume edges
the divergence operator for tensor fields defined similarly to the divergence operator for
convection-diffusion equation, with the mass flux computed with the velocity vector fie
at thenth time step.
The existence and uniqueness of a solution to prolf&nfollow at once from

n

1 .
E@uMHu"0 = A—t(|dv + AtD(MU" ® C - —oy () )u™t0 = Z—t - Gp",
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which means that for smallt,
At|D(MU"® C - —ov())|| <1,

which in turn implies thaE(u™) has an inverse in the Banach algebra of linear operatol
overV.
The influence of the CFL number on the convergence rate is investigated in Section
We complete the time evolution first with the projection of the resulting velocity vect
field u"*%% into the space of solenoidal vector fields

un+1 — P0<un+1,0 _ Ud) + vd, (311)

wherevg e kerD Avg(i) =0 (i), i €92, and where the orthogonal projection operator
Py: Vo — ker D, is defined as

Pou = ugq
for all u € V,, with
u=uq+ D}o, ug € ker Dy, ¢€eS, (3.12)

where we have used the Hodge decompositioNget ker D, @ im D, with D}: S— V,
being the adjoint operator of the restricted divergence opeyoy, — S, Do=D)y,. In
these expression¥, stands for the subspace\éfconsisting of the vector fields vanishing
at the domain boundary. We then compute the pressure field from a second fracti
step:

untl _ gyn

X E D(Mu" ® Cu™*? — o, u"10)) = —Gp™*™. (3.13)

Remark 3.1. The projection into the space of solenoidal vector fields could have be
performed by straightforward application of the orthogonal projeddiod — ker D; how-
ever, the resulting vector field would not, in general, satisfy the prescribed boundary col
tions. The proposed strategy circumvents this problem using the projection ogdey.ator
this end, a vector field vanishing at the domain boundary is needed. This can be attaine
subtracting fromu™+1.2 a vector field that is equal to zero at the interior of the domain an
equal to the prescribed boundary conditions at the boundary; however, the resulting ve
field u™* would not, in general, be solenoidal. Thus, the need for a solenoidal vector fi
vg IS shown.

Remark 3.2. There are several different but equivalent procedures for implementir
the projection operator. We next consider three of them, namely: (a) the Galerkin .
proach, (b) the Variational approach, and (c) the Chorin approach. In the Galerkin
proach, we first determine a basis of K&y, saye={€}a=1. dimkerd,- ThiS can be ac-
complished, for instance, by considering the Hodge decomposition which asserts
ker Do = (im Dg)+. Therefore, a basis for k&, can be obtained by considering the images
through(Dg)ﬁtgb = ([(D§):¢]2, —[(D§):¢]1) of a basis ofS. Finally, the computation of
the projectionPyv = w € ker Dy of any vector fieldv € V is effected by solving the fol-
lowing linear system of equationgjiN:1 Alwi =va,a=1,..., N, wherev, = (v, €)v
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is theath covariant component af € Vy in the basise, a=1, ..., dim kerDg (we refer
to e as a basis ol/; this should be understood in the sense of an extensiatofa
basis ofVo, which, of course, always existsh, is the(i, a) entry in change of basis ma-
trix e; = ZiN:lAiaé ,a=1 ..., N, w =(w, &) is theith covariant component a# in the
working basis{& }i—1... N, andi =1, ..., N. One such procedure has been successfull
implemented in the framework of a Cartesian grid by Relal. [11].

In the variational approach, we can use the fact that for a giveXy, Pov = w € kerDg
is thesolution of the following minimal problenA: Find w € ker Dy such that

lv —w]| = min!.

The solution ofVA can be easily obtained from the Lagrange multipliers method if we rec:
that these multipliers are nothing but the components of the gradient of the function we w
to minimize (in the present casé(w) = ||lv — w|) in the space normal to the restriction
manifold (in the present case, K&g). So, by using the Hodge decomposition, the solutior
of VA is computed by solving the linear problem

[igs [?o] [Zi] - m (3.14)

where id;: V — V is the identity operator, anfl € Sis the function corresponding to the
Lagrange multipliers.

Finally, inthe Chorin approach, for a givere Vp, Pov = w € ker Dy can be determined by
subtracting fromv € V its orthogonal complement. The latter, by the Hodge decompositio
is to be found in inDj.

Under favorable conditions, the Galerkin approach can result in a smaller systen
equations. However, due to non-local basis elements, for multiply connected regions,
matrix for the Galerkin procedure is more complex (see, for example, [11, 12]). Combinat
of the first and second block lines in Eq. (3.14) of the variational procedure using |
Lagrange multipliers leads to the Chorin approach. Other minimizing techniques for
variational approach could be used. However, to the authors’ knowledge, so far they t
not been considered in the literature. The minimization property of the projection mett
also implies that the “perturbation” in the velocity field introduced in the projection ste
is the smallest necessary variation to change this field into a solenoidal one. In the pre
work, the decomposition will be carried out via the direct determination of the orthogor
component, i.e., the Chorin approach.

Remark 3.3. Using the Chorin approach, we can skip the actual computatiary of
noticing that from Eqg. (3.12) we have

Po(un+1,0 _ vd) — un+l,0 — vy — D;(p

Nevertheless, the existencewfis required and can be easily obtained for some functio
¢ € S. So,

U — I:,O(um—l,o _ Ud) Fvg = uMLo D¢ (3.15)



58 KOBAYASHI, PEREIRA, AND PEREIRA

The functiong € S can be determined as follows. Sino&™ ekerD, it follows that
(DU, )5 =0, for all € S. Substitution of Eq. (3.15) fau"*! yields
(DU, y)s = (DD;g, ¥)s = (D, Dyy)v (3.16)

for all ¥ € S. In particular, for

leQqu)s{ : - s (3.17)
(J,0, ifjeQAj#i
we get the linear system of equations

> ¢ (Diyi. Dyyrj)y = (DU™0, yry) e, j e, (3.18)

ieQ,

wherep = > .o @' ;. Solving this system of equations yields S.
Remark 3.4. The convergence of Eq. (3.13) provides a solutiphd S/kerG. Let

G: S/kerG — V
R (3.19)
[Pl = G[p] = Gp.
which is clearly well defined. Then,
imG =imG. (3.20)

In other words, even though the value of pressure can be indeterminate, its gradie!
well defined and satisfies (3.13). In fact, consider the case where the control volgrae
triangle. Then, locally, the gradient operator is given by

2 2

(€] -"2- pi) Aly,ll + (Du-gpm) AI){,III + (P ;— p1) AI){I,I

. (3.21)

1 Q] -"2- Pi) A)|(7“ + (Pu + Pu) AIXI,III + P+ p1) AIXII,I
Gp-

~ my(r)

wherep is the pressure and stands for the (externally) oriented vector areas at vertice
I, 1, andlll and the corresponding edges, respectively (see Fig. 3.2). Hen€&jkgiven

A Il

11

AHUJ’ |

FIG. 3.2. Notation for local gradient computation.
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by
1 (p|+P||)AIl“ + (p||+p|||)Al |+ (P|||+P|)A“ |
Gp. = 2 h 2 -0 (3.22)
my(7) | (& ZDH)AIZ.II + (pu+2pm) A2 |+ (P +p1) +P|) Aﬁl |
for all T € 0. Equation (3.22) can then be written as
AL+ AL Al + Al [ pi ] . (Al + Al ) i ] (3.23)
ATy + Al ARy A ] LP (A + AZ ) pun
From
A+ A+ A =0 (3.24)
it follows that
AL+ AL A+ Al
) ) ) ) = A x A (3.25)
ATy + A AT+ Al
Sincer is a hon-degenerate triangle we obtain
P = Pu = Pu-. (3.26)

So, for a grid consisting of triangles, dim K8r= 1, and as it happens with the continuum
case, only constant functions have zero gradient. A similar (but lengthier) computat
shows that in the case of a quadrilateral the local condition is

P = Pui and  py = pw,

where verticed andlll, andIl and IV are opposite vertices, corresponding to the so
called checkerboard mode [7]. Hence, for a grid consisting only of quadrilaterals, we h
dim kerG =2.

Therefore, we only use the intermediate pressure values for the computation of
pressure gradient (it is necessary, in the momentum equation, for the pressure gra
to be the gradient of a function). The actual value of the pressure, when it is requirec
evaluated by the reconstruction of the pressure field from the pressure gradient. To this
we triangulate the dual grid and interpolate each component of the pressure gradient
this new grid, by use of the linear finite element interpolation. In this way, each compon
of the gradient is continuous. Hence, pressu@lisnd can be recovered by: (i) fixing the
value of the pressure at one point, (ii) integrating over each edge using the formula

pL = po+/t-gradp ds (3.27)

wherepg, p1 are endpoints in an edgeis the unit vector in the edge pointing frop to
p1, anddsis its arc length.
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Remark 3.5. We solve the momentum equations forandu, simultaneously, using
the ILU-preconditioned BI-CGSTAB [24]. Because of the symmetry and positivity of th
matrix, we use the ILU-preconditioned conjugate gradient (PCG) method in the project
step.

Remark 3.6. Computation of pressure in the second fractional step can be simplifi
by: (i) subtracting Eq. (3.10) from Eq. (3.13), yielding

1 *
Gpn+1 — Gpn + ED0¢3

where we have used Eqg. (3.15); and (ii) approximalifg~ —G, (notice that for a uniform
Cartesian gridGo = —Dg, and in generalDg ¢ = —Ggj. ¢ + O(h)).

Hence, writing

we obtain the correct solution for the momentum equation as long as the overall met
converges to a steady state, afd kerGo N ker D§. This last condition is met in hybrid
grids for which dim keiD§ = 1. This is the case of hybrid grids with triangles. Indeed, fol
a triangle control volume, we have (see Fig. 3.3 for notation definition)

. 1 %(‘bl —¢||)+@(¢u —¢|||)+@(¢m —é)
Dodr = —— .

my () @((Ibl —én) + %@u —én) + ai

5+ (b — 1)

and the result follows similarly as in the case of the gradient (compare with Remark 3.
On the other hand, if the grid is composed only of quadrilaterals we can, for instance,
the value ofp at one grid point. Alternatively, we let the PCG method find ker D§.

FIG. 3.3. Notation for local gradient (skew adjoint of the divergence operator) computation.
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In Section 4, we study the possibility of using a faaigrin the update of the pressure
field, i.e.,

¢
PAL

Remark 3.7. In the literature, it is mentioned that a second projection step can be adv.
tageous, at least in conjunction with a pressure correction strategy [25]. In the framew
of the projection methods, the pressure correction schemes can be regarded as proje
methods with an oblique projection. This is in contrast with the orthogonal projection us
in the present work. Numerical experiments carried out by the authors, using a sec
projection, displayed only a marginal gain in the number of iterations necessary for ¢
vergence (of the order of 3%), while highly penalizing the CPU time. This suggests the
second projection step is not necessary in the present method.

At this point it is useful to sum up the steps in a workable algorithm. Starting wit
O, p®, we first compute the coefficients and pressure gradient in the discretized Navi
Stokes equations, usingj andp". Then, we solve Eq. (3.10) fa+1.0. Next, we apply the
projection to the intermediate discrete vector figld-° by computingp from Eqg. (3.18),
yielding u"**. Finally, we update pressure using Eq. (3.28). We proceed with these st
until the steady state is achieved. This is established when

ﬁ) <

'S} uI?ef ’

wheree is a given convergence level (typically=107%), and ¢, andu,es are reference
length and speed, respectively.

ptl=p" -« (3.28)

unJrl,O —un
At

Lre
Max(MDu““'OnooL;e,

ref

4. NUMERICAL RESULTS

This section presents numerical calculations for four test cases of different compl
ity aiming to assess the accuracy, robustness, and efficiency of the proposed met
These test cases include: (a) the two-dimensional convection—diffusion transport of a sc
(b) the incompressible viscous flow through a convergent channel, (c) the lid cavity fl
with body forces, and (d) the lid cavity flow.

Transport of a Passive Scalar

We consider the transport (Eq. (2.1)) for the function

d(X,y) = sin(%x) sin(%y), (x,y)eQ =0, 1%

The velocity field is computed from the stream functipr= %¢> to give

ui(x,y) = %(X, y)=U sin<7;x> cos(Zy)

Ux(X,y) = —Z—Iﬁ(x, y) =-U cos(%x) sin(%y>

for all (x, y) € 2. We define the Reynolds number asRgU/T.
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FIG. 4.1. Hybrid mesh comprising 160 elements.

The aim of this test case is to evaluate the influence of the boundary conditions on
quality of the results.

Since we know the analytical solution, we consider the following set of boundary con
tions: (a) Dirichlet boundary condition at all boundaries, and (b) von Neumann bound
condition at all boundaries except at the inflow boundary for which Dirichlet bounda
condition was used (the use of von Neumann conditions at all boundaries does not fix
solution). We consider hybrid grids comprising 160, 640, 2560, and 10,240 control volum
Figure 4.1 shows the grid with 160 control volumes. The connection of the midpoints
the edges, as is shown in Fig. 4.2, generates all subsequent grids. For each grid, we
consider three values of the Reynolds number=Re10, 1. The reference values are
Lei=1 andues=U (actually, we consider Eq. (2.1) in non-dimensional form, and the
control the diffusive coefficient/Re). Figures 4.3a and 4.3b show the error evolufigh,
and||e||1, respectively, as a function of the cell width. These figures clearly show that t
magnitudes of the errdjre|| ., (uniform) and|e||; decay quadratically for several Reynolds
numbers under Dirichlet or von Neumann boundary conditions.

Viscous Flow through a Convergent Channel

Inthis second test case, we consider the analytical solution of the Navier—Stokes equa
for the viscous incompressible fluid flow through a 2D convergent channel. The geometr
the problemis schematically shownin Fig. 4.4. Atinletand outlet, the values of the analyti
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Refinement

FIG. 4.2. Refinement strategy.

velocity field are prescribed, while the remaining boundary conditions correspond to the
slip condition at the wall and symmetry condition at the centerline. The analytical soluti
for this problem can be found in, for example, Landau and Lifchitz [26] and is given
cylindrical coordinatesr, ¢, z) as

6v
v,=v,=0, v, = Tf(w),

1.0E-01 ¢
1.0E-02 +
e
[>e]
1.0E-03 + —e— Dirichlet Re=1
—— Dirichlet Re=10
—&— Dirichlet Re=1 000 000
1.0E-04 + - - @ - -von Neumann Re=1
- - & - -von Neumann Re=10
- - & - -von Neumann Re=1 000 000
1.0E-05 f |
1.0E-03 1.0E-02 1.0E-01

h

FIG. 4.3a. Error evolution (€| ,) with mesh parameter.
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—— Dirichlet Re=1
—— Dirichlet Re=10
1.0E-01 —&— Dirichlet Re=1 000 000

- - @ - -von Neumann Re=1
- - & - -von Neumann Re=10
- - & - -von Neumann Re=1 000 000
1.0E-02 +
|
el
1.0E-03 +
1.0E-04 +
1.0E-05 ! ;
1.0E-03 1.0E-02 1.0E-01

FIG. 4.3b. Error evolution (e||;) with mesh parameter.
wherev is the kinematic viscosity anél(¢) is a function, which is implicitly given as

fp)
; dw
20 = (4.1)

o \/(w + Up) [—~w? — (1 — up)w + g 7

whereug andq are constants which can be determined from the conditions

0
/ dw
o =
V@ + Uo) [~w2 — (- ugyw +

—Ug

0

R_e_/ wdw
6 ) Jwtu[-w2—a-upw+q]

mee], L . N symmetry line

w
=

FIG. 4.4. Problem configuration.
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whereq is the aperture angle (see Fig. 4.4) and Re is the Reynolds number%,eQ
being the mass flow rate through the convergent channel. Equation (4.1) can also be wi
as

2¢ = E(f(9) — E(uo),

where

\/1+2X—uo+4/4q+(u0—1)2
E(X) = Em(X)F | sin? VA 12 2,/4q+ (Uo— 1)?
(=] — =m

V2 " (1—3uo+/4q+ (Lo — 1?)

and
Em(X)
22[x + 3(1— o+ Aq + (g — D?)] 1/ (=1~ 2x + U + /4q + (Up — 12)
\/[q+X(uO— 1—x)](1+2x — Uo+ /49 + (Uo — 1)?) (1—3up + \/4Q+(Uo—1)2).

In the above expressioR(x; m) stands for the elliptic integral of first kind. We consider
four meshes comprising 106, 428, 1720, and 6896 control volumes. Figure 4.5 shows
grid comprising 1720 control volumes. The values of the parameters used in the simulat
are Re=600,0 =30°,a=b=1,p=1,v=133x 1073,

o
Lt = (@+Db) tan<2>, Uref = |QI/0Lref.

The aim of this test case is to verify the order of accuracy of the method for both t
velocity vector and pressure fields, and to compare their error evolution with the first-or

5 AVAVAVANV
e > AN AN AN A VAVAVAVAVAV
ATV AN AN AN 7

FIG. 4.5. Hybrid mesh comprising 1720 elements.
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1.0E-01
1.0E-02 +
” 1
1.0E-03 + —e—U First order
—&—V First order
—&— P First order
e " --#--U Second order
1.0E-04 + : - - & - -V Second order
. ‘ - - & - - P Second order
A
1.0E-05 f |
1.0E-03 1.0E-02 1.0E-01

h

FIG. 4.6. Error evolution (e|;) with mesh parameter.

upwind scheme. Figure 4.6 shows the error evoluti@i,, of the velocity vector and
pressure fields as a function of the cell width for both first- and second-order schemes.
results show the quadratic evolution of the error norm for the proposed second-order sch
while, as expected, the first-order scheme displays linear error evolution. The propc
second-order-accurate scheme clearly shows that for the same level of accuracy, it req
many fewer mesh nodes than the first-order-accurate scheme and that this tendency incr
with accuracy requirement.

Figures 4.7a, 4.7b, and 4.7c show the comparison between analytical and predi
solutions ofuy, u,, and p, respectively, along the vertical coordinatexat 1.5. The pre-
dicted profiles, obtained with 6896 control volumes, are virtually identical to the analytic
solution.

Figure 4.8a shows the predicted pressure field before the reconstruction procedure.
solution displays the checkerboard mode obtained with a mesh comprising only quadr
erals with about 600 elements. This problem can be eliminated (see Fig. 4.8b), with
reconstruction procedure explained in Section 3.

Analytical Cavity

In this third test case, we consider the recirculating viscous flow in a square cavity dri\
by combined shear and body forces. Figure 4.9 shows schematically the geometry o
problem and boundary conditions for the velocity field. This benchmark appeared in S
et al. [27], where the details of the problem can also be found. Here we summarize
relevant information. The vertical body force is given by the expression

8
B(X1, X2; Re) = R_e{24/ 21(X1) + 281 (X1) &5 (X2) + ¢1" (X1)£2(X2)

— 64[Y2(X1) Ya(X2) — £2(X2) 5 (X2) Y1(X1)],
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FIG. 4.7a. u,-profile: exact vs numerical.
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FIG. 4.7b. u,-profile: exact vs numerical.
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0.30 —

0.20 —

0.10 —

0.00

[ ) Exact

Numerical

-0.66

I | | [
-0.65 -0.64 -0.63 -0.62
P(y)

FIG. 4.7c. p-profile: exact vs numerical.

a(x) = X7 — 23 + %2
C2(X2) = X3 — X3

Yi(x1) = &(x0)¢] (%) — [£1(x0)]?
Ya(X1) = /Cl(Xl)Ei(Xl)

Y3(X2) = £2(X2) L5 (X2) — $5(X2) 85 (X2)

FIG. 4.8a. Pressure field: with checkerboard.

-0.61
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FIG. 4.8b. Pressure field: reconstructed.

for all (x1, Xo) € 2 =[0, 1]2. The Dirichlet boundary conditions correspond to zero velocity
at all boundaries except for the top surface, where

Ur(x1, ) = 1601(x0),  x1€[0, 1].
An exact solution for this problem exists and is known to be

U1(X1, X2) = 821(X1)Z5(X2)

Uz(X1, X2) = —8¢1(X1)Z2(X2)
and
8
P(X1, X2; Re) = Re [24< / ﬁ(xl)) 8o (X2) + 281 (X1)55(X2)

+ 64Y2(x1) { £2(X2) 25 (X2) — [2(x2)]?}.

U (xl’l)z 16¢, (x1)
—>

0
0

u(0,x,)
u(1,x,)

Xy u(x;,0)=0

FIG. 4.9. Problem configuration.
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FIG. 4.10. Hybrid mesh comprising 160 elements—highly irregular.

We compute this problem using three pairs of grids. Each pair comprises about 160, ¢
and 2500 control volumes. The intent of this test case is to assess the influence of the
irregularity on the quality of the numerical results. Figure 4.10 depicts the irregular g
comprising 160 control volumes; the regular grid is the same as in Fig. 4.1. The pertin
parameters for the simulation are Rd, u,e;= ¢t =1. Figure 4.11 displays the error
norms of the predicted velocity components for the different grids and clearly shows t
the numerical solution is second order accurate.

Classical Lid-Driven Cavity

As the final test case, we consider the classical benchmark of the lid-driven cavity fl¢
The boundary conditions are similar to those of the previous test case except for the u
boundary for which a constant unit velocity is assigned. The solutions of Ghia [28], obtair
using a second-order-accurate numerical method and a very fine mesh=dtOReand
Re= 1000, are taken as reference values. For this test case we.use es = 1.

Figure 4.1 shows a typical grid used in the calculations and Fig. 4.12 depicts the stre
lines evaluated from the predicted velocity field at=R&000 using 10,240 mesh control
volumes. Prior to the comparison between the predicted and the reference velocity
ues, a systematic assessment of the influence of several model parameters is perfo
Figures 4.13a and 4.13b show, for R&400 and Re=1000, respectively, the required
number of iterations to achieve steady state of the discrete Navier—Stokes equation
a function of the under-relaxation factor for the pressure evolution (Eg. (3.28)) and C
parameter. The solid and dash lines denote coarse (640 elements) and finer (2560 elen
meshes, respectively. The figures indicate that the most efficient relaxation parameter
responds terp, = 1. This represents a clear gain in numerical efficiency over semi-implic
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1.0E-02 +
1.0E-03 +
“ 1
—&—U Regular mesh
1.0E-04 —A—V Regular mesh
-- @ --Ulrregular mesh
- - 4 - -V Irregular mesh
1.0E-05 | ’
1.0E-03 1.0E-02

1.0E-01
h

FIG. 4.11. Error evolution (el|;) with mesh parameter.

FIG. 4.12. Streamlines for lid-driven cavity Re 1000.
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0.00 0.20 0.40 0.60 0.80 1.00
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FIG. 4.13a. lterations vs relaxation factor Re100.
Re=1000
1 . .
0000.00 — | o0
7] Dashed lines represent finer meshes
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— e - - - - - - - e - - - —
1000.00 —|
] .-
— e u
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FIG. 4.13b. lIterations vs relaxation factor Re1000.
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0.80 —
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0.40 —
0.20 —
-
\\\-\
0.00 ‘ 1 \ \ \
-0.40 0.00 0.40 0.80 1.20

U-velocity

FIG. 4.14a. u,-profile: reference (Ghiat al) vs actual predictions.

0.40 —

0.20 —

0.00 —¢

-0.20 —

-0.40 —

-0.60 T ] | \

0.00 0.20 0.40 0.60 0.80 1.00
X

FIG. 4.14b. u,-profile: reference (Ghiat al)) vs actual predictions.
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pressure-linked equations (SIMPLE) extensions used in the framework of unstructured g
for which a strong under-relaxation may be required. Another conclusion that can be drz
from the results is related to the value of CFL parameter used in the fractional time s
projection method. Numerical experimentation with the present flow configuration sho
the optimum value to be around 10. Also, this choice is independent of the Reynolds nun
and cell width.

Finally, Figs. 4.14aand 4.14b show the axial and transversal velocity components prof
acrossthe center plane of the cavity forr/R2000, obtained with the above mesh with 10,24C
control volumes. The numerical solutions obtained with the ULSS are virtually identical
the reference values of Ghéa al.[28] (with a 128x 128 uniform mesh).

5. CONCLUSIONS

In this paper, a new finite-volume projection method for incompressible fluid flow h:
been presented. The method is second-order accurate in general irregular unstruc
hybrid grids. This was achieved by choosing a grid staggering that allows one to natur
define the relevant Hilbert spaces and the gradient and divergence operators. In partic
we do not fix one of the operators and define the other to be skew adjoint of the first.

Numerical simulation of different test cases showed that the combination of the mett
with the upwind least squares convection discretization scheme yields second-order gl
accuracy and it is in agreement with the theoretical analysis undertaken along with
presentation of the method. The results show that the present method yields a second-c
accurate solution for the incompressible steady version of the Navier—Stokes equation
arbitrary unstructured hybrid meshes for a broad range of two-dimensional geometries
Reynolds numbers.

To the authors’ knowledge, this paper represents the first general unstructured grid fi
volume method to achieve full second-order accuracy for the steady incompressible
version of Navier—Stokes equations.
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