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This paper describes a finite volume discretization method to compute steady, two-
dimensional incompressible viscous recirculating flows using hybrid unstructured
meshes, composed of triangles and quadrilaterals. However, the proposed formulation
is not restricted to these topologies.

The new method includes a second-order least squares scheme for convection dis-
cretization, and a fractional step projection method based on a staggered grid arrange-
ment for pressure velocity coupling. Numerical results are reported to demonstrate
the robustness, second-order accuracy, and flexibility of the proposed method.

To the authors’ knowledge, this paper represents the first general unstructured grid
finite volume method to achieve full second-order accuracy for the steady incom-
pressible 2D version of Navier–Stokes equations.c© 1999 Academic Press
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1. INTRODUCTION

The numerical integration of the Navier–Stokes equations, for incompressible fluid flow
in primitive variable formulation, faces the problem of the pressure–velocity coupling.
This problem has been overcome in the framework of finite differences or finite volume
method by several classical methods and mesh collocation arrangements for the dependent
variables; see, for example, [1–5]. Extensions of these methods are straightforward for
structured curvilinear orthogonal or non-orthogonal grids; see, for example, [6]. However,
for unstructured grids, the numerical methods to achieve pressure–velocity coupling are
less well documented in the open literature and most of the reported works employ versions
of the SIMPLE algorithm for collocated meshes.
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The Harlow–Welch algorithm [1] constrains the velocity field into zero divergence by
coupling the continuity and momentum equations via a pressure Poisson equation. The
requirement for artificial boundary conditions for the pressure equation may not be in
agreement with the requirement of velocity boundary conditions for the Navier–Stokes
equations [7]. Chorin [3] proposed an explicit and dissipative artificial compressibility
method by combining the continuity equation and an artificial state equation to obtain the
pressure field. Patankar and Spalding [4] proposed the family of semi-implicit pressure-
linked equations that impose the incompressibility constraint via a Poisson equation for
pressure correction.

The projection methods [8, 9] are based in the Hodge decomposition in Hilbert spaces
where the divergence vanishes through the orthogonal projection in the vector space of zero
divergence. This projection is made using discrete operators for divergence and gradient
(its skew adjoint).

First- and second-order-accurate versions of the projection method have been proposed
in the framework of finite differences using structured grids. Van Kan [10] has proposed a
version of the projection method for structured orthogonal staggered grids using the skew
adjoint of the discrete divergence operator as discrete gradient operator. Bellet al. [11]
have proposed a projection method for structured Cartesian staggered meshes in which the
projection was attained by a Galerkin procedure. Moreover, the gradient discretization was
used to obtain the skew adjoint of the divergence operator. A generalization of this method
for structured non-orthogonal mesh arrangements was proposed by Bellet al. [12]. Also,
the condition of zero divergence has been relaxed by Almgrenet al. [13].

For unstructured grids, Guermond and Quartapelle [14] have proposed, in the framework
of the finite element method, a projection method for triangular meshes. Also in the context
of finite elements, Gresho [15, 16] has derived several types of projection methods which
included a complete discussion of the related theoretical aspects of the methods.

The present paper presents a conservative finite volume projection method for the so-
lution of the incompressible Navier–Stokes equations. The method is based on a hybrid
unstructured mesh composed of, but not restricted to, triangles and quadrilaterals that may
be mixed in the computational domain. It uses a staggered grid arrangement, which is a
generalization for hybrid unstructured grids of the ICED-ALE arrangement [2]. The pres-
sure field is computed in a way that averts generating a checkerboard distribution associated
with the ICED-ALE staggering arrangement for quadrilaterals. The overall method is, to
the authors knowledge, the first finite-volume method based on a hybrid unstructured grid
to attain full second-order accuracy in the computations of incompressible fluid flows.

The accuracy and the stability of the upwind least squares scheme (ULSS) are analyzed
within the present framework. Finally, the accuracy and the robustness of the ensuing method
are assessed. This is done by comparing our solutions against either known analytical or
standard numerical test case solutions available in the literature.

2. DISCRETIZATION PROCEDURE

The transport equation for a quantityφ in the intrinsic form can be written as

∂ρφ

∂t
+ div(ρuφ − 0φ gradφ) = Sφ, (2.1)

whereu is the velocity vector field,ρ is the density field,0φ is the diffusivity ofφ, and
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Sφ is the source/sink balance ofφ. In the present work, by using the finite-volume method,
numerical integration of Eq. (2.1) is carried out on an unstructured hybrid grid consisting, in
the two-dimensional case, of triangles and quadrilaterals. Other grid topologies are allowed
by the formulation but these shapes suffice for most of the applications.

Let σ denote a partition of the domain of interest,Ä⊂R2, i.e.,

Ä =
⋃
i∈ j

σi , σi ∩ σ j = \, i 6= j, i, j ∈ J, σ = {σi }i∈J,

whereJ is a finite index set;σi ∈ σ is a control volume. In the present work, each control
volumeσi ∈ σ can be either a triangle or a quadrilateral. In the finite-volume approach we
start with the integration of Eq. (2.1) over each control volume, so that we seek a solution
of Eq. (2.1) in the generalized sense [17].

Givenτ ∈ σ , and a time step1t , it proceeds as

ρφn+1− ρφn

1t
mV (τ )+

∫
∂τ

(ρuφ − 0φ gradφ)n =
∫
τ

Sφ, (2.2)

wheremV (τ ) is the Lebesgue measure ofτ , the overbar stands for the temporal average,
and we have used theGauss Divergence Theoremto move from an integral overτ to an
integral over its boundary∂τ . Equation (2.2) can be cast in the flux balance form

ρφn+1− ρφn

1t
mV (τ )+

∑
i∈∂τ

Ci +
∑
i∈∂τ

Di = S, (2.3)

where∂τ is the set of faces composing the boundary ofτ ; S is the average amount of
creation/destruction ofφ overτ ; andCi , Di stands for the convective and diffusive flux of
φ over facei ∈ ∂τ , respectively. In symbols, we have

Ci ≡
∫
i

ρvnφ, i ∈ ∂τ

Di ≡
∫
i

−0φ

∂φ

∂n
, i ∈ ∂τ (2.4)

S≡
∫
τ

Sφ,

wherevn is the velocity component normal to the facei ∈ ∂τ and ∂φ

∂n is the derivative in the
(exterior) normal direction to the face.

We continue with the description of the discretization of the convective and diffusive
fluxes ofφ.

Convection Discretization Procedure

The ULSS is based on the pointwise reconstruction of the variableφ by a piecewise poly-
nomial which, similarly to the essentially non-oscillatory (ENO) scheme [18], is required
to be consistent with averaging and of high order of accuracy. These requirements amount
to the reconstruction polynomialR∈5σ(R2) satisfying:
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(a) consistency, in the sense that

1

mV (τ )

∫
τ

R= φ̄τ , (2.5)

whereφ̄τ is the space average value ofφ overτ ;
(b) high order of accuracy, in the sense that whenever there is a neighborhoodU ⊂Ä

whereφ is regular, we have

R(x) = φ(x)+ O(hr ), x ∈ U, (2.6)

whereh is a grid parameter andr > 1 is the order of the method, which in the present work
is r = 2.

The symbol5σ(R2) stands for the set of piecewise polynomials inR2 compatible with
a partitionσ , i.e., given an elementR∈5σ(R2) and a setτ ∈ σ , there exists a unique
polynomial p∈5(R2) such thatp(x)= R(x), x ∈ τ , where5(R2) stands for the set of
polynomials inR2. Under the above conditions we proceed with the derivation ofR.

We start with the space-averaged values ofφ stored at the centroids of the control volumes.
Then, given a setτ ∈ σ we approximate the functionφ overτ by an affine or bilinear function
depending on whetherτ is a triangle or a quadrilateral, respectively. The polynomial is
computed by the least squares approximation of the average values of the function at an
appropriate set of neighboring points. Next, we give the details of the procedure for a triangle
and a quadrilateral control volume.

τ Is a Triangle

For any pair(x1, x2)∈ τ we write

R(x1, x2;φ) = φ̄τ + a1x1+ a2x2, (2.7)

wherea1, a2 are coefficients to be determined, and(x1, x2) are local Cartesian coordinates
with origin in the centroid ofτ (see Fig. 2.1). We compute the coefficientsa1, a2 from the

FIG. 2.1. Stencil for convection discretization.
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following minimization problem: finda1, a2 such that

χ(a1, a2) =
∑
i∈i τ

(
R
(
xi

1, xi
2;φ
)− φ̄i

)2 =
∑
i∈i τ

(
φ̄τ + a1xi

1+ a2xi
2− φ̄i

)2
(2.8)

is minimum.
In Eq. (2.8), i τ ={I , II , III } stands for the set of adjacent control volumes toτ (see

Fig. 2.1), and(xi
1, xi

2) is the coordinate pair of pointi ∈ i τ . Solution of this problem is
obtained as in the least squares method by solving the set of linear equations resulting from

∇χ(a1, a2) = 0. (2.9)

The solution of the previous equation can be easily shown to be

a1 =
∑

i∈i τ(φ̄i − φ̄τ )x
i
1

∑
i∈iτ
(
xi

2

)2−∑i∈i τ(φ̄i − φ̄τ )x
i
2

∑
i∈i τ xi

1xi
2

1
(2.10)

a2 =
∑

i∈i τ(φ̄i − φ̄τ )x
i
2

∑
i∈iτ
(
xi

1

)2−∑i∈i τ(φ̄i − φ̄τ )x
i
1

∑
i∈i τ xi

1xi
2

1
,

where1 is the determinant

1 =
∣∣∣∣∣∣
∑

i∈i τ
(
xi

1

)2 ∑
i∈i τ xi

1xi
2∑

i∈i τ xi
1xi

2

∑
i∈i τ
(
xi

2

)2

∣∣∣∣∣∣ . (2.11)

Notice that the necessary and sufficient condition for the existence of a unique pair
a1, a2 is the non-vanishing of the determinant1. Next, we prove that it never vanishes in a
partition. Writing1 in expanded form as

1 = (xI
1 xII

2 − xII
1 xI

2

)2+ (xI
1 xIII

2 − xIII
1 xI

2

)2+ (xII
1 xIII

2 − xIII
1 xII

2

)2
(2.12)

we conclude that1= 0 is equivalent to

xI
1

/
xI

2 = xII
1

/
xII

2

xII
1

/
xII

2 = xIII
1

/
xIII

2 (2.13)

xIII
1

/
xIII

2 = xI
1

/
xI

2.

Hence,1 vanishes if and only if the four centroids, the centroid ofτ and those of its three
adjacent neighbors, lie over one and the same straight line. Since this cannot occur in any
partition we conclude the existence and uniqueness of the coefficientsa1, a2.

We proceed by showing thatR satisfies the proposed conditions of consistency and of
high order of accuracy. Consistency follows at once from the fact that the origin of the local
coordinate system coincides with the centroid ofτ .

To determine the order of accuracy of the proposed method we expand each value ofφ at
neighboring points in Taylor series about the centroid ofτ , assuming sufficient smoothness
in a neighborhood of the centroid. For example,φ̄ I is given by

φ̄ I = φ̄τ + D1φ̄τ xI
1 + D2φ̄τ xI

2 + O(h2), (2.14)
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whereh is the grid parameter taken to be the greatest cell width of all control volumes, i.e.,

h = max
τ∈σ (4mV (τ )/mS(∂τ )).

mS(∂τ ) is the surface measure of the boundary ofτ, D1φ̄τ is the derivative ofφ̄τ relative
to its first argument and evaluated at the centroid ofτ , and so on. Then, introducing such
expressions in Eq. (2.10) and the latter in Eq. (2.7), and after a lengthy but straightforward
manipulation (taking into account that1 6= 0), we arrive at

R(x1, x2;φ) = φ̄τ + D1φ̄τ x1+ D2φ̄τ x2+ (aD1,1φ̄τ + bD1,2φ̄τ + cD2,2φ̄τ )h
2+ o(h2)

= φ(x1, x2)+ O(h2) (2.15)

for all (x1, x2)∈ τ , wherea, b, c∈R, and, for example, the coefficient of the mixed deriva-
tive, b, is given by

b = (−C1C2
2 Dy D2

1 − C1C2
3 Dy D2

1 + C2
1C2Dy D1D2+ C1C2

2 Dy D1D2

+CxC1C2D2
1 D2− CxC2

2 D2
1 D2− C2

1C2Dy D2
2 − C2C2

3 Dy D2
2 − CxC2

1 D1D2
2

+CxC1C2D1D2
2 + C2

1C3Dy D1D3+ C1C2
3 Dy D1D3+ CxC1C3D2

1 D3

−CxC2
3 D2

1 D3+ C2
2C3Dy D2D3+ C2C2

3 Dy D2D3+ CxC2C3D2
2 D3

−CxC2
3 D2

2 D3− C2
1C3Dy D2

3 − C2
2C3Dy D2

3 − CxC2
1 D1D2

3 + CxC1C3D1D2
3

−CxC2
2 D2D2

3 + CxC2C3D2D2
3

)/(−C2
2 D2

1 − C2
3 D2

1 + 2C1C2D1D2

−C2
1 D2

2 − C2
3 D2

2 + 2C1C3D1D3+ 2C2C3D2D3− C2
1 D2

3 − C2
2 D2

3

)
,

where

C1 = xI
1

/
h, C2 = xII

1

/
h, C3 = xIII

1

/
h, D1 = xI

2

/
h,

D2 = xII
2

/
h, D3 = xIII

3

/
h, Cx = x1/h, Dy = x2/h,

and local smoothness ofφ and

φ̄τ = φ(x1, x2)+ O(h2), (x1, x2) ∈ τ (2.16)

were used.
In order to have an idea of the form and magnitude of the truncation errors in Eq. (2.15),

we next consider the case of a regular grid composed of equilateral triangles. In this case,
the first truncated terms are given by

R(x1, x2;φ) = φ(x1, x2)+ h2

2

(
−k1D1,2φ̄τ −

k2

2
D1,1φ̄τ +

k2

2
D2,2φ̄τ

)
+ O(h3), (2.17)

wherex1= hk1, x2= hk2, so thatk1∈ [−1/2, 1/2] andk2∈ [−1, 1/2] within τ . To further
investigate the nature of the error under this condition we perform a rotation of the coordinate
system [

x′1
x′2

]
=
[

cosθ sinθ

−sinθ cosθ

][
x1

x2

]
, (2.18)
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which leads to

R(x′1, x′2;φ) = φ(x′1, x′2)+
h2

2
(AD1′,1′ φ̄τ + B D1′,2′ φ̄τ + C D2′,2′ φ̄τ )+ O(h3), (2.19)

where

A = −k2

2
cos 2θ − k1

2
sin 2θ, B = k1 cos 2θ, C = k2

2
cos 2θ + k1

2
sin 2θ. (2.20)

Hence, a rotation of 45◦ eliminates the mixed derivative, and we find

R(x′1, x′2;φ) = φ(x′1, x′2)+
k1h2

2
(−D1′,1′ φ̄τ + D2′,2′ φ̄τ )+ O(h3), (2.21)

which shows that the leading term in the truncation error is compatible with a spatially
propagating wave with constant unit speed.

Finally, the convective flux is evaluated at the control volume faces by solving a linear
Riemann problem with right and left values given by the averaged values ofR at right and
left sides of the face, respectively. The convective velocity is given by the local value of the
normal component of the velocity at the face.

Remark 2.1. In the case of the Navier–Stokes equations, the linear problem is substituted
by the Riemann problem for the Burgers’ equations in a local coordinate system with one
of the coordinates aligned with the normal direction to the cell face. Namely, we choose
the limit values of the reconstruction polynomials for the velocity components inx1 andx2

directions, which are upwinded with respect to the component of the velocity vector field
(from the previous time step) normal to the cell face.

The left- and right-averaged value at the cell (control volume) face in the case of a triangle
is just the value ofR computed at the middle point of the cell face. So,Ci at a facei ∈ ∂τ

is approximated by

Ci
∼= (ρvnmS(i ))i φi , (2.22)

whereφi is given by

φi =
{

R(x1(i − 0), x2(i − 0);φ), if vn > 0

R(x1(i + 0), x2(i + 0);φ), if vn < 0
(2.23)

and R(x1(i ± 0), x2(i ± 0);φ) stands for the left limit(i − 0), or the right limit(i + 0) of
R at the middle point of the cell face under consideration.

τ Is a Quadrilateral

In the case of a quadrilateral control volume, there is one more neighboring point avail-
able. Therefore, we use a bilinear reconstruction. Analogously to the triangle, we compute
a1, a2, a3∈R that minimizes,

χ(a1, a2, a3) =
∑
i∈iτ

(
R
(
xi

1, xi
2; φ̄
)− φ̄i

)2
, (2.24)

with

R(x1, x2; φ̄) = φ̄τ + a1x1+ a2x2+ a3x1x2. (2.25)
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It is easy to see that the solution of the latter problem is given by
∑

i∈iτ
(
xi

1

)2 ∑
i∈iτ xi

1xi
2

∑
i∈iτ
(
xi

1

)2
xi

2∑
i∈iτ xi

1xi
2

∑
i∈iτ
(
xi

2

)2 ∑
i∈i τ xi

1

(
xi

2

)2∑
i∈i τ
(
xi

1

)2
xi

2

∑
i∈i τ xi

1

(
xi

2

)2 ∑
i∈i τ
(
xi

1

)2(
xi

2

)2


a1

a2

a3

 =

∑

i∈iτ(φ̄i − φ̄τ )x
i
1∑

i∈iτ(φ̄i − φ̄τ )x
i
2∑

i∈i τ(φ̄i − φ̄τ )x
i
1xi

2

 .

(2.26)

The existence and the uniqueness of a solution of this linear system are assured if the
matrix on the L.H.S. of Eq. (2.26) is non-degenerate. Letgi j , i, j = 1, 2, 3, denote the
components of this matrix. In order to characterize the set where the latter is degenerate,
we first observe thatgi j can be written as

gi j = vi · v j , (2.27)

where

v1 =
(
xi

1

)
i∈i τ , v2 =

(
xi

2

)
i∈iτ , and v3 =

(
xi

1xi
2

)
i∈i τ . (2.28)

Hence,gi j is analogous to a metric matrix in a three-dimensional subspace ofR4, and it
will be non-degenerate if and only if{v1, v2, v3} form a basis of this subspace. That is, it
will be degenerate if and only ifvi is zero for somei ∈ {1, 2, 3}, or if there exist constants
a, b, c∈R, not all vanishing at the same time, such that

av1+ bv2+ cv3 = 0. (2.29)

Therefore, for [gi j ] to be degenerate, eitherv3= 0 (v1, v2 6= 0) or if c 6= 0, all neighboring
pointsi τ must lie over one and the same square hyperbola,

x2+ a

c
= b/c

b/c+ x1
, (2.30)

or, if c= 0, over the same line,

ax1+ bx2 = 0. (2.31)

Since these curves have zero measure inR2, the probability of randomly generating such
points is zero. However, the grid generation is not a random process and indeed there is a
common situation where the neighboring points lead tov3= 0: for example, this happens
when the grid is Cartesian. This result could have been anticipated by noticing that in such a
case the curvature of the bilinear approximation is not “felt” by the minimization problem,
and so an infinite number of coefficients would have resulted. In such cases, we fix the
indeterminacy by taking the affine function as for a triangle control volume.

Consistency will not necessarily follow in an arbitrary coordinate system since, in general,
the area inertia product,I12=

∫
τ
x1x2, of the control volume does not vanish. This difficulty

is overcome by rotating the local coordinate system to coincide with the principal axis of
inertia of the control volume, where by definitionI12= 0. The rotation angleθ is given by

tg2θ = 2I12

I11− I22
, (2.32)

whereI11, andI22 are the area moments of inertia in thex1 andx2 directions, respectively.
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As for the triangle control volume, the convective flux is evaluated at the control volume
faces by solving a linear Riemann problem with right and left values given by the averaged
values ofR at right and left sides of the face, respectively. Computations of the second
moments and the limit mean values ofR at a cell face are carried out by Gauss quadrature.

Finally, the order of the method is evaluated as in the triangle case by assuming sufficient
smoothness ofφ in a neighboring of the centroid, expanding in Taylor series the neigh-
boring points toτ , and substituting in the reconstruction polynomial. Again, a lengthy but
straightforward computation yields as leading truncation errors

R(x1, x2;φ) = φ̄τ + D1φ̄τ x1+ D2φ̄τ x2+ (âD11φ̄τ + êD22φ̄τ )h
2+ o(h2)

= φ(x1, x2)+ O(h2), (2.33)

whereâ, ê∈R. Notice that in contrast to the triangle control volume, the mixed derivative
does not appear. For example, in the case of a Cartesian grid with expanding/contracting
ratios rat1 and rat2 in thex1 andx2 directions, respectively, we find

â = Cx

(
rat31− 1

)
2
(
1+ rat21

) (2.34)

and

ê= Cy

(
rat32− 1

)
2
(
1+ rat22

) . (2.35)

Notice that for rat1= rat2= 1 the method is third-order accurate.
We have shown the method is consistent and second-order accurate. Here, it should be

stressed that independently of its irregularity and composition, the method is second-order
accurate in any grid topology. Indeed, a shape was never assumed for the neighbors, nor
was any regularity assumed for the grid. This is in contrast to other methods for convec-
tion discretization commonly used in applications. These methods, the central differencing
scheme, the minmod scheme, the MUSCL scheme [19], the linear upwind scheme, and the
non-oscillatory UNO2 scheme [20] are only second-order accurate on uniform grids. This
fact can be relevant in applications where almost invariably all grids are non-uniform and
composed of a sensible (limited) number of points.

Diffusion Discretization Procedure

Diffusive fluxes are approximated as

Di ≡
∫
i

−0φ

∂φ

∂n
≈ −0φ|i

∂φ

∂n|i
ms(i ), i ∈ ∂τ . (2.36)

This approximation is accomplished by taking the central differencing of the interpolated
adjacent node values, i.e.,

∂φ

∂n
≈ φn+ − φn−

δn
, (2.37)

whereφn+ andφn− are linearly interpolated at the points indicated in Fig. 2.2, andδn is the
distance in the normal direction between these points. The proposed approximation reverts
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FIG. 2.2. Diffusion discretization.

to the second-order-accurate central differencing scheme in the case of a Cartesian grid. In
general, it is exact for polynomials of first degree, i.e., affine functions.

Remark 2.2. In the case of the momentum (vector) equations, the diffusive flux, i.e., the
deviatoric stress tensor, requires an extra interpolation in the direction tangent to the cell
face. Indeed, given a facei ∈ ∂τ and its outward normal unit vectorn, the deviatoric stress
tensorσν , identified with a linear map when applied ton, gives the tension vector that acts
at facei . Taking into account the Stokes model forσν , we obtain

σν(n) = ν

(
2
∂vn

∂n
n+

(
∂vn

∂t
+ ∂vt

∂n

)
t

)
, (2.38)

wheret is the tangent unit vector (see Fig. 2.2),vn= v · n is the outward velocity component
normal to facei , andvt = v · t is the velocity component tangent to that face. So, in addition
to the normal derivative, which is evaluated as indicated above, the computation of the term
∂vn/∂t is required. This is carried out similarly to (2.37) as

∂vn

∂t
≈ vt+

n − vt−
n

δt
, (2.39)

wherevt+
n , vt−

n are linearly interpolated at the points indicated in Fig. 2.2 andδt is analogous
to δn.

Von Neumann Stability Analysis

For the sake of conciseness, we perform a von Neumann stability analysis for the case
of the one-dimensional transport equation of a scalarφ. We assume a constant velocityu
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(to the right) and a constant diffusive coefficient0φ . The transport equation is discretized
over a uniform mesh with grid parameterh and a constant time step1t . We consider the
discretization procedure for the diffusive flux as discussed above (which under the conditions
of the present subsection reverts to the central differencing scheme) in the Euler implicit
form and three temporal discretization procedures for the ULSS scheme, namely: (i) the
Euler implicit approach, (ii) the Euler explicit approach, and (iii) the deferred-correction
approach. The selected combinations cover the range of temporal discretization methods
usually employed in the applications. At this point it should be emphasized that in the
present paper we are only interested in computations for the steady state. So it is sufficient
to consider methods that are only first order in time. In fact, at steady state, the numerical
solution will be of the order of accuracy of the space discretization procedure, which in the
present case is second-order.

Case I: Convection→ implicit, diffusion→ implicit. Under the conditions of the present
subsection Eq. (2.3) simplifies to

φn+1
i = φn

i −
σc

4

(
φn+1

i+1 + 3φn+1
i − 5φn+1

i−1 +φn+1
i−2

)+ σc

Peh

(
φn+1

i+1 − 2φn+1
i +φn+1

i−1

)
, (2.40)

whereσc=1t/τc is the CFL number, with the convective time scaleτc= h/u, and Peh=
uh/0φ is the grid Péclet number. Then, by substitutingφ in Eq. (2.40) by itskth Fourier
mode, i.e.,φ→8 exp(ikx), where8 is the amplification factor andk the wave number,
and subsequently factoring the resulting equation, we obtain the following expression for
the amplification factor,

8 = 4

4+ 8σc/Peh(1− cosβ)+ σc(exp(−2iβ)− 5 exp(−iβ)+ 3+ exp(iβ))
, (2.41)

whereβ = kh. The method is von Neumann stable if|8| ≤1. So, the implicit method is
unconditionally stable. In fact, it is sufficient to observe that the denominator of Eq. (2.41)
can be written as

|8|den=
√(

4+ 8
σc

Peh
(1− cosβ)+ σc(1− cosβ)2

)2

+ σ 2
c (6 sinβ − sin 2β)2, (2.42)

which is greater than 4.

Case II: Convection→ explicit, diffusion→ implicit. With the same notation as above,
the discretized equation now reads

φn+1
i = φn

i −
σc

4

(
φn

i+1+ 3φn
i − 5φn

i−1+ φn
i−2

)+ σc

Peh

(
φn+1

i+1 − 2φn+1
i + φn+1

i−1

)
(2.43)

and the corresponding amplification factor is given by

8 =
Peh exp(−2i πη)(−4 exp(4i πη)+ σc(1− 5 exp(2i πη)+ 3 exp(4i πη)+ exp(6i πη)))

4(σc(1− 2 exp(2i πη)+ exp(4i πη))− exp(2i πη)Peh)
,

(2.44)
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whereη= h
λ
, andλ is the wavelength,λ= 2π

k . So,η is the reciprocal of the non-dimensional
wavelength. Contrary to the previous case, the present combination is not unconditionally
stable. In fact, to be von Neumann stable it is necessary thatη= 0, where|8| =1, be a point
of maximum. That is, Peh andσc must satisfy

∂2|8|
∂η2

∣∣∣∣
η=0

≤ 0,

or

4π2

((
(σc − 2)2− 4(1− σc)

)− (Pe2
h − (2σc + Peh)

)
Pe2

h

)
≤ 0. (2.45)

So, it is necessary that

σcPeh ≤ 2. (2.46)

This last condition is also sufficient. In fact, by taking the derivative of|8| with respect
to η and then substitutingσc by 2/Peh yields

∂|8|
∂η |(2/Peh,Peh,η)

= 8πPe2
h cos(πη)

(
22−Pe2

h+Pe3
h−8 cos(2πη)−3Pe2h cos(2πη)+2 cos(2πη) sin3(πη)

)(
4 cos(2πη)− 4− Pe2

h

)3∣∣8( 2
Peh

, Peh, η
)∣∣ .

(2.47)

This result follows from noticing that|8| is periodic with respect toη with unit period, that
it is even with respect toη−1/2, and that

∂|8|
∂η |(2/Peh,Peh,η)

≤ 0, (2.48)

for all η∈ [0, 1/2]. In conclusion, the ULSS for the explicit–implicit case is stable if and
only if σcPeh≤ 2.

Case III: Convection→ deferred-correction, diffusion→ implicit. In this case, the dis-
cretized equation reads

φn+1
i = φn

i −
σc

4

(
φn+1

i − φn+1
i−1

)− σc

4

(
φn

i+1+ 2φn
i − 4φn

i−1+ φn
i−2

)
+ σc

Peh

(
φn+1

i+1 − 2φn+1
i + φn+1

i−1

)
, (2.49)

to which corresponds an amplification factor of

8= Peh exp(−2i πη)(4 exp(4i πη)+σc(−1+4 exp(2i πη)−2 exp(4i πη)−exp(6i πη)))

σc(−4+ 8 exp(2i πη)− 4 exp(4i πη))+ 4Peh exp(4i πη)+ σcPeh(exp(2i πη)− 1)
.

(2.50)
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An analysis analogous to the previous one shows that the ULSS for the deferred-correction–
implicit combination is stable if and only ifσcPeh≤ 4.

In the literature it is frequently claimed that deferred correction can stabilize the conver-
gence procedure (see, for example [21–23]). However, as this relation indicates under the
present conditions the stability gain is only marginal for high Peh.

Boundary Conditions

We consider two types of boundary conditions: (i) Dirichlet and (ii) von Neumann.

Dirichlet boundary condition. When the value of the variableφ is known at a boundary
∂τB, we use it directly in the convective flux, i.e.,

CB = ρB(vn)BφBmS(∂τB), (2.51)

where the subscriptB denotes the corresponding value at the boundary∂τB. On the other
hand, for the diffusive flux we compute the (exterior) normal derivative as

∂φ

∂n|B
= −

(
1

(δn)I
+ 1

(δn)II

)
φB + (δn)II

(δn)I

1

(δn)II − (δn)I
φI + (δn)I

(δn)II

1

(δn)I − (δn)II
φII ,

(2.52)

where the notation is defined in Fig. 2.3. This method corresponds to an immediate gener-
alization of the one-sided second-order method for approximating a derivative.

Von Neumann boundary condition.In contrast with the previous case, it is the derivative
∂φ

∂n that is known at a boundary∂τB. So, for the diffusive flux we compute

DB = −(0φ)B
∂φ

∂n|B
mS(∂τB). (2.53)

Finally, for a control volume adjacent to the boundary∂τB, we use∂φ/∂n|B in the re-
construction. This is attained by modifying the unrestrained minimization problem into
a conditioned one. For instance, in the case of a triangular control volume we solve the

FIG. 2.3. Diffusion discretization at boundaries.
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following: find a1, a2 such that

χ(a1, a2) =
∑
i∈i τ

(
R
(
xi

1, xi
2;φ
)− φ̄i

)2 =
∑
i∈i τ

(
φ̄τ + a1xi

1+ a2xi
2− φ̄i

)2
(2.54)

is minimum and

∂ R

∂n|B
= ∂φ

∂n|B
. (2.55)

This problem can easily be solved using the Lagrange multiplier method; that is, we solve,
for (a1, a2, υ)∈R3, the equations

∇χ(a1, a2) = υ∇γ (a1, a2)
(2.56)

γ (a1, a2) ≡ a1n1+ a2n2 = 0,

whereυ is the Lagrange multiplier. The quadrilateral control volume is treated analogously.
In Section 4, we study the influence of the boundary conditions on the quality of the

results.

3. FRACTIONAL STEP PROJECTION METHOD—F raSp

Having established the discretized version of the convection–diffusion equation, we pro-
ceed with the derivation of the projection method for the computation of incompressible
fluid flow on unstructured hybrid meshes.

Given a gridσ , we define the dual gridσ ∗ by joining the centroids of control volumes
concurrent to the vertices (see Fig. 3.1). LetV denote the linear space of vector fields with

FIG. 3.1. Mesh arrangement.
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support at the centroid of the mesh control volumes, i.e.,

V = {u ∈ X(Ä): ui = 0, i 6∈ Äc}, (3.1)

where

u ∈ X(Ä)⇔ u: Ä→ Ä× Rd,

with u(i )= (i, ui ), i ∈Ä, ui ∈Rd and whereÄc stands for the set of centroids of the mesh
control volumes, and dimV = N. Similarly, let S be the linear space of scalar fields with
support at the vertices of the mesh control volumes, i.e.,

S= {φ ∈ F(Ä): φi = 0, i 6∈ Äv}, (3.2)

where

φ ∈ F(Ä)⇔ φ: Ä→ Ä× R,

with φ(i )= (i, φi ), i ∈Ä, φi ∈R and whereÄv stands for the set of vertices of the mesh
control volumes, and dimS=M . Define the inner product overV as

(·, ·)V : V × V → R
(3.3)

:(u, v) 7→ (u, v)V ≡
∑
i∈Äc

ui · vi mV (τ (i )),

wheremV is the Lebesgue measure andτ(i ) is the control volume associated with centroid
i, i ∈Äc. Let

(·, ·)S: S× S→ R
(3.4)

:(ϕ, ψ) 7→ (ϕ, ψ)S ≡
∑
i∈Äv

ϕi ψi mV (τ ∗(i ))

be the inner product overS, whereτ ∗(i ) is the control volume associated with the vertices
i, i ∈Äv. With the above definitions(V, (·, ·)V ) and(S, (·, ·)S) are Hilbert spaces. In fact,
the defined inner products are the pull back through a “weighted coordinate isomorphism”
to RN andRM , respectively, of the standard dot product.

We consider the sectionse: Äc→Äc×E(Rd), andξ : Äv→Äv ×E(R) of the trivial
fiber bundles(Äc × E(Rd), pr1, Äc) and(Äv × E(R), pr1, Äv), respectively, given by

e(i ) = (i, (e1, . . . , ed)), ξ( j ) = ( j, 1) (3.5)

for all i ∈Äc, j ∈Äv, where{e1, . . . , ed} is the canonical basis ofRd. For instance,E(Rd)
is the subspace of the Cartesian product

Rd × · · · × Rd︸ ︷︷ ︸
d times

composed of pointsp= (p1, . . . , pd) such that all componentsp1, . . . , pd ∈ Rd constitute
a basis ofRd, andpr1: Äc×E(Rd)→Äc is the projection on the first factor. Similarly, we
define(Äv×E(R), pr1, Äv) (notice that we usepr1: Äv×E(R)→Äv for this fiber bundle
as well).



FINITE-VOLUME SECOND-ORDER PROJECTION METHODS 55

Over these spaces, we then define the gradient operatorG: S→V as

Gφ =
∑
i∈Äc

d∑
j=1

(Gφ) j (i )ej (i ) (3.6)

for all φ ∈ S, where

(Gφ) j (i ) ≡ 1

mV (τ (i ))

∑
f ∈∂τ(i )

φ f mS( f )nj ( f ) ∈ R (3.7)

for all i ∈Äc and j = 1, . . . , d, whereτ(i ) is the control volume associated with the centroid
i, ∂τ (i ) denotes its boundary, i.e.,∂τ(i )={ f1, . . . , f# f (i )}, # f (i ) is the number of cell faces
associated with the control volumeτ(i ), i ∈Äc, φ f is the arithmetic mean of the values of the
functionφ at the vertices associated with the cell facef , andnj ( f ) is j th component of the
unit exterior normal vector at cell facef, j = 1, . . . , d. We similarly define the divergence
operatorD: V→ Sas

Du =
∑
i∈Äv

Du(i )ξ(i ) (3.8)

for all u∈V , where

Du(i ) ≡ 1

mV (τ ∗(i ))

∑
f ∈∂τ ∗(i )

u f · n f mS( f ) ∈ R (3.9)

for all i ∈Äv, whereτ ∗(i ) stands for the dual control volume associated with the vertices
i, ∂τ ∗(i ) denotes its boundary, i.e.,∂τ ∗(i )={ f1, . . . , f# f (i )}, # f (i ) is the number of cell
faces associated with the control volumeτ ∗(i ), i ∈Äv, u f is the arithmetic mean of the
vector fieldu at the vertices associated with the cell facef , andn f is the unit exterior
normal vector at cell facef .

With the above definitions for the projection method, we proceed with a fractional time
evolution given by the solution of the following linear problemFS: Find un+1,0∈V such
that

un+1,0− un

1t
+ D

(
Mun ⊗ Cun+1,0− σv(u

n+1,0)
) = −Gpn and u|n+1,0

∂Äc
= gtn+1,

(3.10)

wheregt : ∂Ä→ ∂Ä × Rd at each timet is a given vector field over the domain boundary
∂Ä, ∂Äc is the set of points on∂Ä at the center of the edges of the control volumes which
are adjacent to the boundaries,u is the velocity vector field,p is the pressure field,1t is the
time step,σv is the deviatoric stress tensor,⊗ denotes the tensor product, and the superscript
n denotes the value at thenth time step. In this expression,D: Ve⊗Ve→V , whereVe stands
for the linear space of discrete vector fields with support at the control volume edges, is
the divergence operator for tensor fields defined similarly to the divergence operator for the
convection-diffusion equation, with the mass flux computed with the velocity vector field
at thenth time step.

The existence and uniqueness of a solution to problemFS follow at once from

E(un)un+1,0 = 1

1t

(
idV +1tD

(
Mun ⊗ C · −σV (·)))un+1,0 = un

1t
− Gpn,
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which means that for small1t ,

1t
∥∥D
(
Mun ⊗ C · −σV (·))∥∥< 1,

which in turn implies thatE(un) has an inverse in the Banach algebra of linear operators
overV .

The influence of the CFL number on the convergence rate is investigated in Section 4.
We complete the time evolution first with the projection of the resulting velocity vector

field un+1,0 into the space of solenoidal vector fields

un+1 = Po
(
un+1,0− vd

)+ vd, (3.11)

where vd ∈ kerD∧ vd(i )= gt (i ), i ∈ ∂Ä, and where the orthogonal projection operator
Po: Vo→ kerDo is defined as

Pou = ud

for all u∈Vo, with

u = ud + D∗oφ, ud ∈ kerDo, φ ∈ S, (3.12)

where we have used the Hodge decomposition ofVo= kerDo⊕ im D∗o, with D∗o: S→Vo

being the adjoint operator of the restricted divergence operatorDo: Vo→ S, Do≡ D|Vo. In
these expressions,Vo stands for the subspace ofV consisting of the vector fields vanishing
at the domain boundary. We then compute the pressure field from a second fractional
step:

un+1− un

1t
+ D

(
Mun ⊗ Cun+1,0− σv(u

n+1,0)
) = −Gpn+1. (3.13)

Remark 3.1. The projection into the space of solenoidal vector fields could have been
performed by straightforward application of the orthogonal projectionP: V→ kerD; how-
ever, the resulting vector field would not, in general, satisfy the prescribed boundary condi-
tions. The proposed strategy circumvents this problem using the projection operatorPo. To
this end, a vector field vanishing at the domain boundary is needed. This can be attained by
subtracting fromun+1,0 a vector field that is equal to zero at the interior of the domain and
equal to the prescribed boundary conditions at the boundary; however, the resulting vector
field un+1 would not, in general, be solenoidal. Thus, the need for a solenoidal vector field
vd is shown.

Remark 3.2. There are several different but equivalent procedures for implementing
the projection operator. We next consider three of them, namely: (a) the Galerkin ap-
proach, (b) the Variational approach, and (c) the Chorin approach. In the Galerkin ap-
proach, we first determine a basis of kerD0, say ē={ēa}a= 1,...,dim kerD0. This can be ac-
complished, for instance, by considering the Hodge decomposition which asserts that
kerD0= (im D∗0)

⊥. Therefore, a basis for kerD0 can be obtained by considering the images
through(D∗0)

⊥
|τ φ≡ ([(D∗0)|τ φ]2,−[(D∗0)|τ φ]1) of a basis ofS. Finally, the computation of

the projectionP0v=w ∈ kerD0 of any vector fieldv ∈V0 is effected by solving the fol-
lowing linear system of equations:

∑N
i=1 Ai

awi = v̄a, a= 1, . . . , N, where ¯va= (v, ēa)V
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is theath covariant component ofv ∈V0 in the basisē, a= 1, . . . , dim kerD0 (we refer
to ē as a basis ofV0; this should be understood in the sense of an extension ofē to a
basis ofV0, which, of course, always exists),Ai

a is the(i, a) entry in change of basis ma-
trix ēa=

∑N
i=1Ai

aêi , a= 1, . . . , N, wi = (w, êi ) is thei th covariant component ofw in the
working basis{êi }i=1,...,N , and i = 1, . . . , N. One such procedure has been successfully
implemented in the framework of a Cartesian grid by Bellet al. [11].

In the variational approach, we can use the fact that for a givenv ∈V0, P0v=w ∈ kerD0

is thesolution of the following minimal problemVA: Findw ∈ kerD0 such that

‖v − w‖ = min!.

The solution ofVA can be easily obtained from the Lagrange multipliers method if we recall
that these multipliers are nothing but the components of the gradient of the function we want
to minimize (in the present case,f (w)=‖v−w‖) in the space normal to the restriction
manifold (in the present case, kerD0). So, by using the Hodge decomposition, the solution
of VA is computed by solving the linear problem

[
D0 0
idV D∗0

][
w

φ

]
=
[

0
v

]
, (3.14)

where idV : V→V is the identity operator, andφ ∈ S is the function corresponding to the
Lagrange multipliers.

Finally, in the Chorin approach, for a givenv ∈V0, P0v=w ∈ ker D0 can be determined by
subtracting fromv ∈V0 its orthogonal complement. The latter, by the Hodge decomposition,
is to be found in imD∗0.

Under favorable conditions, the Galerkin approach can result in a smaller system of
equations. However, due to non-local basis elements, for multiply connected regions, the
matrix for the Galerkin procedure is more complex (see, for example, [11, 12]). Combination
of the first and second block lines in Eq. (3.14) of the variational procedure using the
Lagrange multipliers leads to the Chorin approach. Other minimizing techniques for the
variational approach could be used. However, to the authors’ knowledge, so far they have
not been considered in the literature. The minimization property of the projection method
also implies that the “perturbation” in the velocity field introduced in the projection step
is the smallest necessary variation to change this field into a solenoidal one. In the present
work, the decomposition will be carried out via the direct determination of the orthogonal
component, i.e., the Chorin approach.

Remark 3.3. Using the Chorin approach, we can skip the actual computation ofvd

noticing that from Eq. (3.12) we have

Po
(
un+1,0− vd

) = un+1,0− vd − D∗oφ.

Nevertheless, the existence ofvd is required and can be easily obtained for some function
φ ∈ S. So,

un+1 = Po
(
un+1,0− vd

)+ vd = un+1,0− D∗oφ. (3.15)
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The functionφ ∈ S can be determined as follows. Sinceun+1∈ kerD, it follows that
(Dun+1, ψ)S= 0, for all ψ ∈ S. Substitution of Eq. (3.15) forun+1 yields

(Dun+1,0, ψ)S = (DD∗oφ, ψ)S = (D∗oφ, D∗oψ)V (3.16)

for all ψ ∈ S. In particular, for

i ∈Äv: ψi ( j ) ≡
{

( j, 1), if j ∈ Äv ∧ j = i

( j, 0), if j ∈ Äv ∧ j 6= i
, (3.17)

we get the linear system of equations∑
i∈Äv

φi (D∗oψi , D∗oψ j )V =
(
Dun+1,0, ψ j

)
S
, j ∈ Äv, (3.18)

whereφ= ∑i ∈Äv
φi ψi . Solving this system of equations yieldsφ ∈ S.

Remark 3.4. The convergence of Eq. (3.13) provides a solution [p] ∈ S/kerG. Let

Ĝ: S/kerG→ V
(3.19)

:[ p] 7→ Ĝ[ p] ≡ Gp,

which is clearly well defined. Then,

im Ĝ = im G. (3.20)

In other words, even though the value of pressure can be indeterminate, its gradient is
well defined and satisfies (3.13). In fact, consider the case where the control volumeτ is a
triangle. Then, locally, the gradient operator is given by

Gp|τ = 1

mV (τ )

[
(pI + pII )

2 Ax
I ,II + (pII + pIII )

2 Ax
II ,III + (pIII + pI )

2 Ax
III ,I

(pI + pII )

2 Ay
I ,II + (pII + pIII )

2 Ay
II ,III + (pIII + pI )

2 Ay
III ,I

]
τ

, (3.21)

wherep is the pressure andA stands for the (externally) oriented vector areas at vertices
I, II , andIII and the corresponding edges, respectively (see Fig. 3.2). Hence, kerG is given

FIG. 3.2. Notation for local gradient computation.
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by

Gp|τ = 1

mV (τ )

[
(pI + pII )

2 A1
I ,II + (pII + pIII )

2 A1
II ,III + (pIII + pI )

2 A1
III ,I

(pI + pII )

2 A2
I ,II + (pII + pIII )

2 A2
II ,III + (pIII + pI )

2 A2
III ,I

]
τ

= 0 (3.22)

for all τ ∈ σ . Equation (3.22) can then be written as[
A1

I ,II + A1
III ,I A1

I ,II + A1
II ,III

A2
I ,II + A2

III ,I A2
I ,II + A2

II ,III

][
pI

pII

]
= −

[(
A1

II ,III + A1
I ,III

)
pIII(

A2
II ,III + A2

I ,III

)
pIII

]
. (3.23)

From

AI ,II + AII ,III + AIII ,I = 0 (3.24)

it follows that

det

[
A1

I ,II + A1
III ,I A1

I ,II + A1
II ,III

A2
I ,II + A2

III ,I A2
I ,II + A2

II ,III

]
= AII ,III × AIII ,I . (3.25)

Sinceτ is a non-degenerate triangle we obtain

pI = pII = pIII . (3.26)

So, for a grid consisting of triangles, dim kerG= 1, and as it happens with the continuum
case, only constant functions have zero gradient. A similar (but lengthier) computation
shows that in the case of a quadrilateral the local condition is

pI = pIII and pII = pIV,

where verticesI and III , and II and IV are opposite vertices, corresponding to the so-
called checkerboard mode [7]. Hence, for a grid consisting only of quadrilaterals, we have
dim kerG= 2.

Therefore, we only use the intermediate pressure values for the computation of the
pressure gradient (it is necessary, in the momentum equation, for the pressure gradient
to be the gradient of a function). The actual value of the pressure, when it is required, is
evaluated by the reconstruction of the pressure field from the pressure gradient. To this end,
we triangulate the dual grid and interpolate each component of the pressure gradient over
this new grid, by use of the linear finite element interpolation. In this way, each component
of the gradient is continuous. Hence, pressure isC1 and can be recovered by: (i) fixing the
value of the pressure at one point, (ii) integrating over each edge using the formula

p1 = p0+
∫

t · gradp ds, (3.27)

wherep0, p1 are endpoints in an edge,t is the unit vector in the edge pointing fromp0 to
p1, andds is its arc length.
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Remark 3.5. We solve the momentum equations foru1 andu2 simultaneously, using
the ILU-preconditioned BI-CGSTAB [24]. Because of the symmetry and positivity of the
matrix, we use the ILU-preconditioned conjugate gradient (PCG) method in the projection
step.

Remark 3.6. Computation of pressure in the second fractional step can be simplified
by: (i) subtracting Eq. (3.10) from Eq. (3.13), yielding

Gpn+1 = Gpn + 1

1t
D∗0φ,

where we have used Eq. (3.15); and (ii) approximatingD∗0 ≈ −G0 (notice that for a uniform
Cartesian grid,G0=−D∗0, and in general,D∗0|τ φ=−G0|τ φ + O(h)).

Hence, writing

pn+1 = pn − φ

1t
,

we obtain the correct solution for the momentum equation as long as the overall method
converges to a steady state, andφ ∈ kerG0 ∩ kerD∗0. This last condition is met in hybrid
grids for which dim kerD∗0= 1. This is the case of hybrid grids with triangles. Indeed, for
a triangle control volumeτ , we have (see Fig. 3.3 for notation definition)

D∗0φ|τ =
1

mV (τ )

 Ã1
I,II

2 (φI − φII )+ Ã1
II ,III

2 (φII − φIII )+ Ã1
III ,I

2 (φIII − φI )

Ã2
I,II

2 (φI − φII )+ Ã2
II ,III

2 (φII − φIII )+ Ã2
III ,I

2 (φIII − φI )


and the result follows similarly as in the case of the gradient (compare with Remark 3.4).

On the other hand, if the grid is composed only of quadrilaterals we can, for instance, fix
the value ofφ at one grid point. Alternatively, we let the PCG method findφ ∈ kerD∗0.

FIG. 3.3. Notation for local gradient (skew adjoint of the divergence operator) computation.
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In Section 4, we study the possibility of using a factorαp in the update of the pressure
field, i.e.,

pn+1 = pn − αp
φ

1t
. (3.28)

Remark 3.7. In the literature, it is mentioned that a second projection step can be advan-
tageous, at least in conjunction with a pressure correction strategy [25]. In the framework
of the projection methods, the pressure correction schemes can be regarded as projection
methods with an oblique projection. This is in contrast with the orthogonal projection used
in the present work. Numerical experiments carried out by the authors, using a second
projection, displayed only a marginal gain in the number of iterations necessary for con-
vergence (of the order of 3%), while highly penalizing the CPU time. This suggests that a
second projection step is not necessary in the present method.

At this point it is useful to sum up the steps in a workable algorithm. Starting with
(u0, p0), we first compute the coefficients and pressure gradient in the discretized Navier–
Stokes equations, usingun andpn. Then, we solve Eq. (3.10) forun+1,0. Next, we apply the
projection to the intermediate discrete vector fieldun+1,0 by computingφ from Eq. (3.18),
yielding un+1. Finally, we update pressure using Eq. (3.28). We proceed with these steps
until the steady state is achieved. This is established when

Max

(
‖Dun+1,0‖∞ `ref

uref
,

∥∥∥∥un+1,0− un

1t

∥∥∥∥
∞

`ref

u2
ref

)
< ε,

whereε is a given convergence level (typicallyε= 10−6), and`ref anduref are reference
length and speed, respectively.

4. NUMERICAL RESULTS

This section presents numerical calculations for four test cases of different complex-
ity aiming to assess the accuracy, robustness, and efficiency of the proposed method.
These test cases include: (a) the two-dimensional convection–diffusion transport of a scalar,
(b) the incompressible viscous flow through a convergent channel, (c) the lid cavity flow
with body forces, and (d) the lid cavity flow.

Transport of a Passive Scalar

We consider the transport (Eq. (2.1)) for the function

φ(x, y) = sin

(
π

2
x

)
sin

(
π

2
y

)
, (x, y)∈Ä ≡ [0, 1]2.

The velocity field is computed from the stream functionψ = 2U
π

φ to give

u1(x, y) = ∂ψ

∂y
(x, y) = U sin

(
π

2
x

)
cos

(
π

2
y

)
u2(x, y) = −∂ψ

∂x
(x, y) = −U cos

(
π

2
x

)
sin

(
π

2
y

)
for all (x, y)∈Ä. We define the Reynolds number as Re= ρU/0φ .
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FIG. 4.1. Hybrid mesh comprising 160 elements.

The aim of this test case is to evaluate the influence of the boundary conditions on the
quality of the results.

Since we know the analytical solution, we consider the following set of boundary condi-
tions: (a) Dirichlet boundary condition at all boundaries, and (b) von Neumann boundary
condition at all boundaries except at the inflow boundary for which Dirichlet boundary
condition was used (the use of von Neumann conditions at all boundaries does not fix the
solution). We consider hybrid grids comprising 160, 640, 2560, and 10,240 control volumes.
Figure 4.1 shows the grid with 160 control volumes. The connection of the midpoints at
the edges, as is shown in Fig. 4.2, generates all subsequent grids. For each grid, we also
consider three values of the Reynolds number: Re= 1, 10, 106. The reference values are
`ref= 1 anduref=U (actually, we consider Eq. (2.1) in non-dimensional form, and then
control the diffusive coefficient 1/Re). Figures 4.3a and 4.3b show the error evolution‖e‖∞
and‖e‖1, respectively, as a function of the cell width. These figures clearly show that the
magnitudes of the error‖e‖∞ (uniform) and‖e‖1 decay quadratically for several Reynolds
numbers under Dirichlet or von Neumann boundary conditions.

Viscous Flow through a Convergent Channel

In this second test case, we consider the analytical solution of the Navier–Stokes equations
for the viscous incompressible fluid flow through a 2D convergent channel. The geometry of
the problem is schematically shown in Fig. 4.4. At inlet and outlet, the values of the analytical
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FIG. 4.2. Refinement strategy.

velocity field are prescribed, while the remaining boundary conditions correspond to the no-
slip condition at the wall and symmetry condition at the centerline. The analytical solution
for this problem can be found in, for example, Landau and Lifchitz [26] and is given in
cylindrical coordinates(r, ϕ, z) as

vϕ = vz = 0, vr (r, ϕ) = 6ν

r
f (ϕ),

FIG. 4.3a. Error evolution (‖e‖∞) with mesh parameter.
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FIG. 4.3b. Error evolution (‖e‖1) with mesh parameter.

whereν is the kinematic viscosity andf (ϕ) is a function, which is implicitly given as

2ϕ =
f (ϕ)∫
−u0

dw√
(w + u0)

[−w2− (1− u0)w + q
] , (4.1)

whereu0 andq are constants which can be determined from the conditions

α =
0∫

−u0

dw√
(w + u0)

[−w2− (1− u0)w + q
]

Re

6
=

0∫
−u0

w dw√
(w + u0)

[−w2− (1− u0)w + q
] ,

FIG. 4.4. Problem configuration.
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whereα is the aperture angle (see Fig. 4.4) and Re is the Reynolds number Re= |Q|
νρ

, Q
being the mass flow rate through the convergent channel. Equation (4.1) can also be written
as

2ϕ = 4( f (ϕ))−4(u0),

where

4(x) = 4m(x)F

sin−1


√

1+ 2x− u0+
√

4q+ (u0− 1)2√
4q+ (u0− 1)2

√
2

,
2
√

4q+ (u0− 1)2(
1− 3u0+

√
4q+ (u0− 1)2

)


and

4m(x)

=
2
√

2
[
x + 1

2

(
1− u0+

√
4q + (u0− 1)2

)]√(−1− 2x + u0+
√

4q + (u0− 1)2
)√

[q+ x(u0− 1− x)]
(
1+ 2x− u0+

√
4q+ (u0− 1)2

)(
1− 3u0+

√
4q+ (u0− 1)2

) .
In the above expressionF(x;m) stands for the elliptic integral of first kind. We consider
four meshes comprising 106, 428, 1720, and 6896 control volumes. Figure 4.5 shows the
grid comprising 1720 control volumes. The values of the parameters used in the simulations
are Re= 600, α= 30◦, a= b= 1, ρ= 1, ν= 1.33× 10−3,

`ref = (a+ b) tan

(
α

2

)
, uref = |Q|/ρ`ref.

The aim of this test case is to verify the order of accuracy of the method for both the
velocity vector and pressure fields, and to compare their error evolution with the first-order

FIG. 4.5. Hybrid mesh comprising 1720 elements.
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FIG. 4.6. Error evolution (‖e‖1) with mesh parameter.

upwind scheme. Figure 4.6 shows the error evolution,‖e‖1, of the velocity vector and
pressure fields as a function of the cell width for both first- and second-order schemes. The
results show the quadratic evolution of the error norm for the proposed second-order scheme
while, as expected, the first-order scheme displays linear error evolution. The proposed
second-order-accurate scheme clearly shows that for the same level of accuracy, it requires
many fewer mesh nodes than the first-order-accurate scheme and that this tendency increases
with accuracy requirement.

Figures 4.7a, 4.7b, and 4.7c show the comparison between analytical and predicted
solutions ofu1, u2, and p, respectively, along the vertical coordinate atx= 1.5. The pre-
dicted profiles, obtained with 6896 control volumes, are virtually identical to the analytical
solution.

Figure 4.8a shows the predicted pressure field before the reconstruction procedure. This
solution displays the checkerboard mode obtained with a mesh comprising only quadrilat-
erals with about 600 elements. This problem can be eliminated (see Fig. 4.8b), with the
reconstruction procedure explained in Section 3.

Analytical Cavity

In this third test case, we consider the recirculating viscous flow in a square cavity driven
by combined shear and body forces. Figure 4.9 shows schematically the geometry of the
problem and boundary conditions for the velocity field. This benchmark appeared in Shih
et al. [27], where the details of the problem can also be found. Here we summarize the
relevant information. The vertical body force is given by the expression

B(x1, x2;Re) = 8

Re

[
24
∫

ζ1(x1)+ 2ζ ′1(x1)ζ
′′
2 (x2)+ ζ ′′′1 (x1)ζ2(x2)

]
− 64[Y2(x1)Y3(x2)− ζ2(x2)ζ

′
2(x2)Y1(x1)],
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FIG. 4.7a. u1-profile: exact vs numerical.

FIG. 4.7b. u2-profile: exact vs numerical.
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FIG. 4.7c. p-profile: exact vs numerical.

where

ζ1(x1) = x4
1 − 2x3

1 + x2
1

ζ2(x2) = x4
2 − x2

2

Y1(x1) = ζ1(x1)ζ
′′
1 (x1)− [ζ ′1(x1)]

2

Y2(x1) =
∫

ζ1(x1)ζ
′
1(x1)

Y3(x2) = ζ2(x2)ζ
′′′
2 (x2)− ζ ′2(x2)ζ

′′
2 (x2)

FIG. 4.8a. Pressure field: with checkerboard.
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FIG. 4.8b. Pressure field: reconstructed.

for all (x1, x2)∈Ä≡ [0, 1]2. The Dirichlet boundary conditions correspond to zero velocity
at all boundaries except for the top surface, where

u1(x1, 1) = 16ζ1(x1), x1∈ [0, 1].

An exact solution for this problem exists and is known to be

u1(x1, x2) = 8ζ1(x1)ζ
′
2(x2)

u2(x1, x2) = −8ζ ′1(x1)ζ2(x2)

and

p(x1, x2;Re) = 8

Re

[
24

(∫
ζ1(x1)

)
ζ ′′′2 (x2)+ 2ζ ′1(x1)ζ

′
2(x2)

]
+ 64Y2(x1)

{
ζ2(x2)ζ

′′
2 (x2)− [ζ2(x2)]

2
}
.

FIG. 4.9. Problem configuration.
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FIG. 4.10. Hybrid mesh comprising 160 elements—highly irregular.

We compute this problem using three pairs of grids. Each pair comprises about 160, 630,
and 2500 control volumes. The intent of this test case is to assess the influence of the grid
irregularity on the quality of the numerical results. Figure 4.10 depicts the irregular grid
comprising 160 control volumes; the regular grid is the same as in Fig. 4.1. The pertinent
parameters for the simulation are Re= 1, uref= `ref= 1. Figure 4.11 displays the error
norms of the predicted velocity components for the different grids and clearly shows that
the numerical solution is second order accurate.

Classical Lid-Driven Cavity

As the final test case, we consider the classical benchmark of the lid-driven cavity flow.
The boundary conditions are similar to those of the previous test case except for the upper
boundary for which a constant unit velocity is assigned. The solutions of Ghia [28], obtained
using a second-order-accurate numerical method and a very fine mesh at Re= 100 and
Re= 1000, are taken as reference values. For this test case we useuref= `ref= 1.

Figure 4.1 shows a typical grid used in the calculations and Fig. 4.12 depicts the stream-
lines evaluated from the predicted velocity field at Re= 1000 using 10,240 mesh control
volumes. Prior to the comparison between the predicted and the reference velocity val-
ues, a systematic assessment of the influence of several model parameters is performed.
Figures 4.13a and 4.13b show, for Re= 100 and Re= 1000, respectively, the required
number of iterations to achieve steady state of the discrete Navier–Stokes equations, as
a function of the under-relaxation factor for the pressure evolution (Eq. (3.28)) and CFL
parameter. The solid and dash lines denote coarse (640 elements) and finer (2560 elements)
meshes, respectively. The figures indicate that the most efficient relaxation parameter cor-
responds toαp= 1. This represents a clear gain in numerical efficiency over semi-implicit
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FIG. 4.11. Error evolution (‖e‖1) with mesh parameter.

FIG. 4.12. Streamlines for lid-driven cavity Re= 1000.



FIG. 4.13a. Iterations vs relaxation factor Re= 100.

FIG. 4.13b. Iterations vs relaxation factor Re= 1000.

72
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FIG. 4.14a. u1-profile: reference (Ghiaet al.) vs actual predictions.

FIG. 4.14b. u2-profile: reference (Ghiaet al.) vs actual predictions.
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pressure-linked equations (SIMPLE) extensions used in the framework of unstructured grids
for which a strong under-relaxation may be required. Another conclusion that can be drawn
from the results is related to the value of CFL parameter used in the fractional time step
projection method. Numerical experimentation with the present flow configuration shows
the optimum value to be around 10. Also, this choice is independent of the Reynolds number
and cell width.

Finally, Figs. 4.14a and 4.14b show the axial and transversal velocity components profiles
across the center plane of the cavity for Re= 1000, obtained with the above mesh with 10,240
control volumes. The numerical solutions obtained with the ULSS are virtually identical to
the reference values of Ghiaet al. [28] (with a 128× 128 uniform mesh).

5. CONCLUSIONS

In this paper, a new finite-volume projection method for incompressible fluid flow has
been presented. The method is second-order accurate in general irregular unstructured
hybrid grids. This was achieved by choosing a grid staggering that allows one to naturally
define the relevant Hilbert spaces and the gradient and divergence operators. In particular,
we do not fix one of the operators and define the other to be skew adjoint of the first.

Numerical simulation of different test cases showed that the combination of the method
with the upwind least squares convection discretization scheme yields second-order global
accuracy and it is in agreement with the theoretical analysis undertaken along with the
presentation of the method. The results show that the present method yields a second-order-
accurate solution for the incompressible steady version of the Navier–Stokes equations on
arbitrary unstructured hybrid meshes for a broad range of two-dimensional geometries and
Reynolds numbers.

To the authors’ knowledge, this paper represents the first general unstructured grid finite
volume method to achieve full second-order accuracy for the steady incompressible 2D
version of Navier–Stokes equations.
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